(98]

The efficiency depends on the ambient condition (p, and
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T)

4. High air rate is required to limit the maximum GT inlet temperature, as a result of which the exhaust

losses are high, unless the waste heat in it is utilized

gl

Compressor work required is quite large, which tells upon the efficiency of the plant

6. Air and gas filters have to be of very high quality so that no dust enters to erode and corrode the

turbine blades

21.4 ‘ ANALYSIS OF A GT PLANT

The analysis of Brayton cycle, the air standard cycle of the GT
plant, has been given in Chapter 13. The salient features of the
cycle (Fig. 21.3) are being given below:

Heat supplied, 0, =m, c, (1,-T,)
Heat rejected, Q, =mc (I,-T)
v-1
—_— 'Y"I
L_L_(m) _, 5
L Ty P P
where m, = mass of air and r, = pressure ration, p,/p;.
T, —T,
The compressor efficiency, n, = 2L
I,-T,
. .- I,-T,
and turbine efficiency, N =—"—07"
TS - T4s

For the ideal cycle, 1-2s —3—4s — 1,
1

ncycle: - -1

As r_ increases, 7y,

Brayton cycle

(21.1)

increases till Carnot cycle is reached (Fig. 21.4). With the increase or r, the mean

temperature of heat addition T, increases, and the mean temperature of heat rejection 7., = decreases
(Fig. 21.5). When in the limit T — Ty and T, — T,, the Carnot efficiency is obtained.

7, =1- 1 =1= ﬂ =1— _Zln.m..
cycle ™ -1 -
‘%7 7‘3 Tmax
"o
Tlcarnot "
3" 3 Metallurgical
o limit
s on 3
| ;
2 | 4I
1 4//
10 —h (rpmax s

i Variation of n

cycle

with To

Effect of r, on Brayton cycle
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o e A
(r) = [gﬁj7—l - [?]’"' @12)
min 1

For a particular value of Ty

Wnet =Ql _Q2 =macp[T$ _T2s_T4s +Tl]
=

L,-Tr,” Ty, 7 +T,

= macp P

There is a particular value of » when W, is maximum
(Fig. 21.6). Now, the values of T, and T ; are known.

Making d:—“‘ = 0, the optimum value of r, becomes

P

T, 20D
(rp )opt = [_T_J !

Therefore, (rp )om = (rp )max

(Wnet )max =m,C, [T3 _2ﬁ3_771+7;]

=mye, (VT —T;) (213)

T
and eyt =1 72 (21.4)

max

If the compressor and turbine efficiencies are considered,
it can be shown

B
5 ]2(7_‘) @1.5)

(%) = [nc'rh T

The work ratio 7, is defined as the ratio of net work to
work done by the turbine.

—1
W T =
= ”;“ =Wy —W,)|W, =1—T—'rp v (21.6)
T 3

Figure 21.7 shows the effect of turbine and compres-
sor efficiencies on cycle efficiency. The thermal efficiency
of Brayton cycle or a GT plant is very sensitive to turbine
inlet temperature 7. As T, increases, the cycle efficiency
increases (Fig. 21.8).

(a) Effect of Regeneration The thermal efficiency of
a simple open-cycle gas turbine may be improved by the

(Whetmax

Woet

1 (r p)opt (r p)max

=

- Effect of r,on W,

-Eﬁect of n, and 1y on Teycle

1200°C
900°C
700°C

— Tcycle

500°C

T

—>fp

_ Effect of turbine inlet temperature
on Ngerma ofa GT plant



utilization of the energy available in the turbine exhaust
gases in a regeneration process. Inspection of Fig. 21.9
reveals that the temperature of the exhaust gases leaving
the turbine at the state 4 is higher than the temperature of
compressed air at the state 2. This difference in tempera-
tures makes the regeneration possible. The recovery of a
part of the thermal energy of the exhaust gases is accom-
plished by installing a heat exchanger called a regenerator
in the flow system as shown in Fig. 21.10. The exhaust
gases at a high temperature enter the hot side of the regene-
rator and are circulated around tubes containing the cold
compressed air in the cold side of the regenerator. In this
system, the temperature of the compressed air is increased
before it reaches the combustion chamber (B) and there-
fore, less fuel is required to raise the air to the specified
turbine inlet temperature. The effectiveness of regenerator
is defined as

Actual temperature rise of air ~ T5 —T)
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k- T-s)diagram of an open-cycle gas
turbine with regenerator

" Maximum temperature rise possible B T,-T,

Here, O, = mc » (T,-T) and Q, = man(T(, —T,), both
of which decrease, whereas W, i.c., (W; - W) remains
unchanged. Therefore, the efficiency of the cycle, W _/Q,,
increases. In order to obtain an ideal regenerator, i.e., one
having a heat exchanger effectiveness or regenerator effi-
ciency of 100 per cent, the temperature of the compressed
air, T,, must be raised to the temperature of the exhaust
gases, T,, entering the regenerator. This could only be
accomplished by having a heat-transfer surface of infinite
area. Since the regenerators are restricted in size due to
weight and space limitation, they have a maximum effec-
tiveness of about 75 per cent.

(b) Effect of Intercooling By staging the compression
process (1-2 and 3-4) with perfect intercooling (2-3),
the cycle efficiency decreases, as shown in Fig. 21.11,
where the small cycle 1-2-3-4-4'—1 is added to the
basic cycle 1-4'-5-6-1 without intercooling. However,
it permits more heat recovery from hot gases exiting
the turbine at the state 6 by heating air leaving the com-
pressor at the state 4. For minimum work of compres-
sion, the intercooler pressure p; =(p,p, )'/2, where p,
and p, are suction and discharge pressures, respectively.

21.7)

Regenerator

Hot gases

To exhaust I Hot side @ from turbine
stack

@__ Cold side Air to
Air from ( f ) cc (B)
compressor  Fegenerator

- Open-cycle gas turbine with

regenerator
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(c) Effect of Reheating  Similarly, by staging the heat supply pro-
cess with a combustor and a reheater, the cycle efficiency decreases,
but it permits more heat recovery from the turbine exhaust gases
(Fig. 21.12) (since T > T,) with the result that reheating along with
regeneration may bring about an improvement in cycle efficiency.

It can be shown that the optimum reheat pressure for maximum
net work output is

P =D P, (21.8)

(d) Effect of Intercooling, Reheating and Regeneration
Figure 21.13(a) and (b) shows the flow and T-s diagrams of a closed- s
cycle GT plant with intercooling, reheating and regeneration. :

The net work of the GT plant is given by
W= Wo W,

net

B =72t of intercooling on
Brayton cycle

=(m,+me)c, [(T,—T)+(T—T,)|
—mye, (T, -1)+(T, -1, (21.9)
Heat supply,

O =(m,+m;)c, (T, 1)+ (T - T,)]

=m; xC.V.
Therefore, the overall plant efficiency
— Wnel
Mo e xC.V. (21.10)
where C.V. = calorific value of the fuel.
Intercooler  Reheater
-2
D 3 7 8
(& G T Tz
6
3 Q4
1 5
N Regenerator

© Brayton cycle with intercooling, reheat and regeneration



Figure 21.14 shows an open-cycle gas turbine with a
regenerator, intercooler and reheater.

21.5 ‘ CLOSED-CYCLE GAS TURBINE

The engines discussed so far have been the open-cycle
gas turbines. In a closed-cycle GT, the same working
medium is continuously circulated (Fig. 21.2). The heat
supply in the cycle takes place through a heat exchanger
where a fuel may be burnt and heat rejection also occurs
through a cooling medium in another heat exchanger.
The performance characteristics, the effect of different
variables and the component elements on the perfor-
mance, and the equations developed for the open cycle

Vs
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Regenerator

Exhaust 6’
gases

Atmospheric

inlet air

Reheating

VIV combustion
m Intercooler chamber
AVAYAVAVAYAVAYA
Cooling
medium

- Open-cycle gas turbine with

apply equally as well to the closed cycle. The advan-
tages of the closed cycle over that of the open cycle
are (1) reduced size, (2) improved part-load efficiency
(3) fuel flexibility. The disadvantages are (1) dependent
system (cooling water availability) (2) complexity and
cost, (3) air heater (not efficient in heat transfer).

regenerator, intercooler, and reheater

21.6 ‘ SEMI-CLOSED CYCLE GT PLANT

The advantages of the open cycle plant, viz. quick and easy starting and the closed cycle plant, viz. constant
efficiency at all loads and higher unit rating permitting the use of higher back pressure, are combined in a
semi-closed cycle gas turbine power plant. Here, part of the compressed air is heated by the gases exiting the
combustion chamber (CC) and then expanded in an air turbine which drives the compressor, thus operating
in a closed cycle. The remaining air is used in the CC to burn fuel, and the combustion products after heat-
ing the air expand in a gas turbine to drive the generator before exhausting to the atmosphere (Fig. 21.15 a).
Figure 21.15 (b) shows a combined combustion chamber and a heat exchanger, where hot gases of combus-
tion leave to expand in the gas turbine in the open cycle and the heated air flows to the air turbine in the
closed cycle.

21.7 ‘ PERFORMANCE OF GAS TURBINE POWER PLANTS

The gas turbine plant works under variable load conditions. It is thus necessary to study the effect of load on
the cycle efficiency which is directly concerned with the running cost of the plant.

It is necessary to study the effect of pressure ratio on the thermal efficiency, air mass flow and spe-
cific fuel consumption with regenerative reheat and intercooled cycle, because smaller mass flow rate
for the given output reduces the component sizes and the plant capital costs. Lower fuel consumption
reduces the running cost of the plant. Some of these characteristics are represented graphically and also
discussed.

(a) Part Load Efficiency The part load efficiencies for open cycle, closed cycle and semi-closed cycle
are shown in Fig. 21.16. The part load performance of the semi-closed cycle is seen to be the best.
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(b) Fuel Consumption The effect of pressure ratio on the specific fuel consumption (sfc) of an open cycle
plant with the degree of regeneration as a parameter is shown in Fig. 21.17. It shows that for each degree of
regeneration there is an optimum pressure ratio for minimum sfc.

(c) Air Rate In the addition to the thermal efficiency which is a measure of the fuel economy, the size
of the plant is equally important in many applications, particularly in the field of aviation. For a given duty,
the size of a plant is dependent on the air flow rate in relationship to the useful shaft output. The air rate is
defined as

_ w, kg/sx3600

, ie.kg/kWh.
Wier (KW)

Air rate is a criterion of the size of the plant, i.e., the lower the air rate, the smaller the plant. From the
mechanical and metallurgical standpoint, the lowering of the air rate results in turbines of smaller physical
dimensions with a more uniform temperature distribution. Any means by which the physical dimensions can
be reduced and the inherent distortions minimized are steps toward greater reliability of the gas turbine . The
effect of pressure ratio on air rate for an open cycle plant with the turbine inlet temperature as a parameter
is shown in Fig. 21.18. It indicates optimum pressure ratio for different turbine inlet temperatures requiring
minimum air rates.

(d) Thermal Efficiency The effect of pressure ratio of a simple open-cycle plant with turbine inlet tempera-
ture as a parameter is shown in Fig. 21.19 and with compressor inlet temperature as a parameter in Fig. 21.20.
As the turbine inlet temperature increases for a particular pressure ratio, thermal efficiency increases, and
for each temperature, there is an optimum value of Ty when efficiency is maximum. An increase in the com-
pressor inlet air temperature increases the compressor work. W_, is decreased, air rate increases and thermal
efficiency decreases. :

(e) Regeneration The effect of regeneration on thermal efficiency of a simple cycle, taking pressure ratio
and turbine inlet air temperature as parameters, is shown in Fig. 21.20(a) and Fig. 21.20(b) respectively.

T T
\ / Turbine inlet
\Y'; temperature as
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< 5 {s \ 100%, £ -/
S \ \ / 75% = K
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2|2 \ | /¢ ik Wo'regene'a‘ion - < /[\'ﬁ/
L \ el /,/ 25 /'
g \ T N
7 \_ﬁ/ .
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% Effect of regenerator effectiveness on Effect of pressure ratio on air mass
specific fuel consumption flow per unit output
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21.8 ‘ COMPONENTS OF A GAS TURBINE PLANT

The construction and operation of the components of a gas turbine plant are necessary for proper understanding
and design.

(a) Compressor The high flow rates of air through the turbine and the relatively moderate pressure ratios
necessiate the use of rotary compressors. The types of compressors commonly used are
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1. Centrifugal compressors
2. Axial flow compressors

These have been discussed in Chapter 19. The centrifugal compressor is comprised of two major parts, the
impeller, or rotating component and the diffusor. The air enters the compressor at the hub and it then moves
radially outward through the impeller and into the diffusor. The impeller converts the mechanical energy,
available to the compressor, into kinetic energy, plus heat due to friction, in the working media. The diffusor
then transforms the kinetic energy in the air into pressure energy in accordance with Bernoulli’s principle.
The flow through the diffusor is subject to frictional losses as well. Also, because the air leaves the impel-
ler radially, it must normally be turned 90° to enter the combustion chamber or regenerator, involving more
frictional losses. The choice of the blade shape (i.e., bent backward, forward or straight radialers) and the
compressor rpm depend on stress limits and manufacturing costs.

In general, the centrifugal compressor, as compared to axial flow, is more rugged, simpler, relatively insensi-
tive to surface deposits, has a wider stability range, is less expensive, and attains a higher pressure ratio per stage.
However, the efficiency is lower, the diameter larger, and it is not readily adaptable to multi-staging. The single-
stage compressors for use in industry may obtain efficiencies from 80 to 84% at pressure ratios between 2.5 and
3, while for aircraft use, pressure ratios are between 4 and 4.5 with efficiencies in the range of 76 to 81%.

The important characteristics of the axial flow compressor are its high peak efficiencies, adaptability to
multistaging to obtain higher overall pressure ratios, high flow-rate capabilities, and relatively small diameter.
However, the axial flow compressor is sensitive to changes in air flow and rpm, which result in a rapid drop
off in efficiencies, i.e., the stability range of speeds for good efficiencies is small.

The axial flow compressor consists of a series of rotor-stator stages. The rotor comprises a series of blades
that move relative to a series of stationary blades called the stator. The blades transmit the mechanical energy
into kinetic energy in the air. Compression is accomplished in both the rotor and stator blades into pressure
energy (i.e., continually diffusing it from a high velocity to a lower velocity with a corresponding rise in static
pressure). The details of the flow diagram and the velocity triangles as well as the power input and efficiency
of the compressor are given in Chapter 19.

(b) Combustion Chamber (CC) Its characteristic feature is that combustion of fuel has to take place with
high air velocities (50 to 140 m/s) to limit the size of the cc and with high air fuel ratios (50:1 to 250:1) to
keep the turbine inlet temperature to permissible limits.

In an open cycle GT plant combustion may be arranged to take place in one or two large cylindrical
can-type combustion chambers (CC) with ducting to convey the hot gases to the turbine. Combustion is
initiated by an electric spark and once the fuel starts burning, the flame is required to be stabilized. A pilot
or recirculated zone is created in the main flow to establish a stable flame which helps to sustain combustion
continuously. The common methods of flame stabilization are by swirl flow and by bluff body.

Figure 21.21 shows a can-type combustor with swirl flow flame stabilization. About 20 per cent of the
total air from the compressor is directly fed through a swirler to the burner as primary air, to provide a rich
fuel-air mixture in the primary zone, which continuously burns, producing high temperature gases. Air flow-
ing through the swirler produces a vortex motion creating a low pressure zone along the axis of the CC to
cause reversal of flow. About 30 per cent of total air is supplied through dilution holes in the secondary zone
through the annulus round the flame tube to complete the combustion. The secondary air must be admitted
at right points in the CC, otherwise the cold injected air may chill the flame locally thereby reducing he rate
of reaction. The secondary air not only helps to complete the combustion process but also helps to cool the
flame tube. The remaining 50 per cent of air is mixed with burnt gases in the tertiary zone to cool the gases
down to the temperature suited to the turbine blade materials.

Figure 21.22 shows a can-type combustor with a bluff body stabilizing the flame. The fuel is injected
upstream into the air flow and a sheet metal cone and perforated baffle plate ensure the necessary mixing of
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fuel and air. The low pressure zone created downstream side causes the reversal of flow along the axis of the
CC to stabilize the flame. Sufficient turbulence is produced in all three zones of the CC for uniform mixing
and good combustion.

The air-fuel ratio in a GT plant varies from 60/1 to 120/1 and the air velocity at entry to the CC is usually
not more than 75 mv/s. There is a rich and a weak limit of flame stability and the limit is usually taken at flame
blowout. Instability of the flame results in rough running with consequent effect on the life of the CC.

Because of the high air-fuel ratio used, the gases entering the HP turbine contain a high percentage of
oxygen and therefore if reheating is performed, the additional fuel can be burned satisfactorily in HP turbine
exhaust, without needing further air for oxygen.

A team “combustion efficiency” is often used in this regard, which is defmed as follows.

Theoretical fuel—air ratio for actual temperature rise
Actual fuel air ratio for actual temperature rise

Combustion efficiency =

Theoretical temperature rise depends on the calorific value of the fuel used, the fuel-air ratio and the ini-
tial temperature of air. To evaluate the combustion efficiency, the inlet and outlet temperatures and the fuel
and air mass flow rates are measured. The fuel used in aircraft gas turbine is a light petroleum distillate or
kerosene of gross calorific value of 46.4 MJ/kg. For gas turbines used in power production or in cogeneration
plants, the fuel used can be natural gas.
In order to give a comparison of combustion chambers operating under different ambient conditions, a
combustion intensity is defined as the following. - :
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Heat release rate

Combustion intensity = -
Volume of CC xinlet pressure

The lower the combustion intensity, the better the design. In aircraft a figure of about 23 kW/(m?atm) is
normal, whereas in large industrial plants it is about 0.2 kW/(m? atm).

The performance criteria of the combustion chamber are (1) low pressure loss, (2) high combustion effi-
ciency, and (3) good flame stability. Flame stability implies steady and continuous flame. This is serious to
the phenomena of resonant or pulsating combustion, and due to blowouts, where the flame is blown out of the
exit of the CC and is thereby extinguished, which may happen in aircraft applications. The main requirements
for a good CC are (1) low carbon deposit in the CC, turbine, and regenerator, (2) low weight and frontal area,
(3) reliability and serviceability, and (4) thorough mixing of cold air with the hot products of combustion to
give uniform temperature distribution.

(c) Gas Turbines Like steam turbines, gas turbines are also of the axial-flow type (Fig. 21.23). The basic
requirements of the turbines are light weight, high efficiency, reliability in operation and long working life.
Large work output can be obtained per stage with high blade speeds when the blades are designed to sustain
higher stresses. More stages are always preferred in gas turbine power plants, because it helps to reduce the
stresses in the blades and increases the overall life of the turbine. The cooling of gas turbine blades is essential
for long life as it is continuously subjected to high temperature gases.
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Blade angles of gas turbines follow the axial-flow compressor blading (Fig. 21.23(a)), where the degree n*
reaction is not 50 per cent. It is usually assumed for any stage that the absolute velocity at inlet to each stag<
(V,) is equal to the absolute velocity at exit from the moving blades (i.e. V,) and that the same flow velocity
V; is constant throughout the turbine.

The degree of reaction, R, as defined for a steam turbine, is valid for gas turbines also. It is the ratio of the
enthalpy drop in the moving blades to the enthalpy drop in the stage. As shown in Fig. 21.23(a), we have

2 2
_ VTV ViGsec® B —sec’ B)
VAV, 2V, (V; tan B, +V; tan )

- Vf(ta-nz ﬁz"tanz ﬂ])=i
_ 2W,(tan B, +tan ) 2V,

(tan B, —tan 3,) (21.11)

Putting R = 0.5 in Eq. (21.11), we get Vi(tan 8, —tan §3,) = ¥,
or Vy+ Vitana, -V tan G, = ¥, a,=0,

It also follows that o, = 3,. The fixed and moving blades have the same cross-section and the diagram is
symmetrical.

Vortex Blading is the name given to the twisted blades which are designed by using three dimensional flow
equations with a view to decrease fluid flow losses. A radial equilibrium equation can be derived (see the book
of Cohen et al.) and it can be shown that one set of conditions which satisfies this equation is as follows.

(a) Constant axial velocity along the blades, i.e. V; = constant.

(b) Constant specific work over the annulus, i.e. V,AV,, = constant.

(c) Free vortex at entry to the moving blades. i.e. V., r = constant, where  is the blade radius at any point.

Since the specific work output is constant over the annulus, it can be calculated at the mean radius,
and multiplied by the mass flow rate it becomes the power for the stage. Since the fluid density varies
along the blade height, the density at the mean radius can be used, so that 7 = PmVsA, where A is the
blade annular area.

(d) Duct work The duct work consists of ducts between the compressor and the combustion chamber,
combustion chamber to the turbine, and the exhaust duct. The ducts must be sized to minimize the
pressure losses, as the loss in pressure directly reduces the capacity of the plant.

Ducts should be supported from the floor to reduce vibrations. Expansion joints must be provided
to allow for dimensional changes due to temperature variation.

The basic requirements for the turbines are light weight, high efficiency, ability to operate at high tem-
peratures for long periods, reliability and serviceability. The determination of blading material depends on the
stress-rupture and creep characteristics of the various blading materials, in combination with mechanical and
thermal stresses, resistance to mechanical and thermal shock, and resistance to corrosion and vibration.

21.9 ‘ GAS TURBINE WITH WATER INJECTION

One method used to improve the performance of the gas turbine is to inject water into the air between the
compressor and the regenerator (Fig. 21.24). The quantity of water injected is just sufficient to saturate the
compressed air. Any excess water injected may cause fouling of the regenerator. Increased mass flow rate
flowing through the turbine increases the turbine output without increasing the compressor work input. Water
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Water Fuel
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i Schematic layout of a two-shaft open cycle gas turbine with water injection and regenerator

injection is most commonly used as a power boost for take-off and emergency requirement with jet propelled
aircraft (see later). However, if water has impurities, it may cause corrosion or deposxts on the blades, which
will have a detrimental effect on the performance and maintenance.

21.10 ‘ GAS TURBINE FUELS

Gas turbines are basically designed to operate on petroleum-based fuels like natural gas, kerosene, aviation fuel
and residual fuel oil. Other fuels like powdered coal, sewage gas, etc. are also being actively considered.

(a) Natural Gas It generally contains a major percentage of methane and a small percentage of ethane
propane and butane. The sulphur compound (H,S) is kept below 0.1 per cent by volume. It is obtained from
wells in oil-fields and used for auxiliary power production within the oil-fields.

(b) Liquid Fuels The liquid fuels range from gas oil to residual fuel oil. The major consideration in select-
ing the fuel is cost. The cheapest fuels are always preferred.

Distillate fuels in the gas oil range (boiling point varies between 200°C to 370°C) may be used in a gas
turbine without any difficulty. Residual fuels include fuel oils, furnace oils, boiler fuel oils, etc. If the viscos-
ity of oil is high, some heating arrangement need be provided. Caution should be observed against corrosion
of blades and other components by sulphur compounds and vanadium.

(c) Solid Fuels The use of coal as fuel for closed cycle gas turbine plant is universally accepted, but its
use in open cycle plant is now in active development. Coal is burnt in two modes, viz. (i) integrated gasifica-
tion, where coal is completely or partially gasified and the fuel gas produced is consumed in the gas turbine
combustor and (ii) pressurized bubbling or circulating fluidized bed, where the fuel gas, after it is adequately
filtered, expands in the gas turbine. Coal is normally considered as a gas turbine fuel in combined cycle power
generation. The development of proper filters, ceramic or others, is the key to its use.

21.119 GAS TURBINE MATERIALS

The combustion chamber of a diesel engine is subjected to the highest temperature of the cycle, 2000°C, to
2500°C, for a very short period during only one stroke of the cycle. During the remaining three strokes, the
engine gets tinie to be cooled. Therefore, special materials are not required for diesel engine plants.

In gas turbine plants, however, the components are continuously exposed to the hot gases and are made
of special materials with necessary arrangements for cooling. Blades are also subjected to high centrifugal
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stresses due to high rotative speeds, in addition to thermal stress. These have a high creep rate, due to which
the blades increase in length gradually. Contact with the casing can thus occur with resultant failure. Blade
materials should possess the following properties.

(i) Materials must withstand high temperature and high stress.
(if) It must have low creep rate.
(iii) It must have high resistance to oxidation, corrosion and erosion.
(iv) It must neither be brittle at ordinary temperature nor plastic like when hot.
(v) It must have good castability or forgeability characteristics, depending on the process of manufacture.
(vi) It must have good machinability to achieve precise dimension.
(vii) It must have high resistance to fatigue failure.
(viil) It must maintain structural stability when exposed to varying temperature.

All these required properties cannot be obtained in one material. Therefore, the selection of material for
each component is a difficult job.

1. Metals for Turbine Rotor Discs The turbine rotor disc is subjected to centrifugal and thermal stresses.
The thermal stresses (due to temperature gradient) can be reduced by using an alloy of high conductivity.

The disc hub stresses tend to cause tensile deformation. This can be minimised by using a material of low
expansion coefficient. Austenitic steels with 12 to 18 per cent chromium, 8 to 12 per cent nickel and small
percentages of tungsten, molybdenum and titanium are used for turbine rotor discs.

These days the turbine discs are cooled by tapping compressed air from the compressor. Therefore, less
expensive materials can be used. Ferritic steels having higher creep strength at low temperature (up to 600°C) can
be used for the central portion, whereas austenitic steel is used on the outer surface of the ferritic rotor disc.

2. Material for Turbine Rotor Blade Blades are subjected to the highest stresses and temperatures. Most
satisfactory materials for blades are the stainless steel alloys and 8-20 nickel chromium alloys, known as
Nimonic alloys. These alloys have high resistance to oxidation, scaling with ceramics (silicon carbide, silicon
nitride, aluminium nitride, etc.) on the blades of nimonic alloys provides better mechanical properties. Blades
are cooled by compressed air taken by a bleed from the compressor.

3. Material for Combustion Chamber The gas turbine combustion chamber is generally made of
Nimonic 75 alloy. This alloy has an excellent creep resistance, capacity to withstand heavy thermal shocks,
and high resistance to oxidation.

4. Material for Compressor The impeller of centrifugal compressor is subjected to high centrifugal and
thermal stresses, the latter being due to the temperature difference between the air inlet and air discharge
temperatures. To minimise centrifugal stresses, lighter materials like aluminium alloys are used. These alloys
suffer from high thermal expansion, for which allowance is provided.

The axial flow compressor blades are now made of titanium alloys, which are of low density, possess good
strength at high temperatures (400-500°C) and are strongly resistant to corrosion. Light weight, good creep
strength and fatigue resistance are attractive features of titanium alloys.

21.12 JET PROPULSION SYSTEM

Jet propulsion, like all means of propulsion, is based on Newton’s second and third laws of motion. Newton’s
second law states that the rate of change of momentum in any direction is proportional to the force acting in
that direction. Newton’s third law states that for every action there is an equal and opposite reaction.
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With regard to vehicles operating entirely in a fluid, the reaction principle is based on imparting momentum
to a mass of fluid in such a manner that the reaction of the imparted momentum furnishes a propulsive force.
Peculiar to jet propulsion, however, this mass of fluid, whose velocity has been increased, is rejected from
the vehicle in a jet stream. The jet aircraft draws in air and expels it to the rear at a markedly increased velo-
city; the rocket greatly changes the velocity of the fuel which it ejects rearward in the form of products of
combustion. In each case, the action of accelerating the mass of fluid in a given direction creats a reaction
in the opposite direction in the form of a propulsive force. The magnitude of this propulsive force is defined
as thrust.

Aircraft propulsion may be achieved by using a heat engine to drive an airscrew or propeller, or by allow-
ing a high-energy fluid to expand and leave the aircraft in a rearward direction as a high-velocity jet. In
the propeller type of aircraft engine, the propeller takes a large mass flow and gives it a moderate velocity
backwards relative to the aircraft. In the jet engine, the aircraft induces a relatively small air flow and gives
it a high velocity backwards relative to the aircraft. In both cases the rate of change of momentum of the air
provides a reactive forward thrust which propels the aircraft. The propeller-type engine can be driven by a
petrol engine or by a gas turbine unit.

If the velocity of the jet backwards relative to the aircraft is ¥, and the velocity of the aircraft is V, then the
atmospheric air, initially at rest, is given a velocity of ( Vv (Fig. 21.25). The thrust available for propulsion
is solely due to the rate of change of momentum of the air stream.

Thrust per unit mass-flow rate =V, -V,
propulsive power is then = VO(Vj -V)
This is the rate at which work must be done in order to keep the aircraft moving at the constant velocity ¥
against the frictional resistance or drag.
Net work output from the engine = Increase in kinetic energy of air =¥ —V;
It is used in the two ways: (i) it provides the thrust and (i) it gives the air, previously at rest, an absolute
velocity (¥, - ¥,) and KE (¥, —¥, )'/2. Therefore,

2
v, =V, v:_ovy, +V?
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21.13 ' PROPULSIVE DEVICES FOR AIRCRAFTS AND MISSILES

Various propulsive devices used for aircrafts and missiles are given below:

Propulsive devices

|
| |

Those which make use Those which do not use
of ambient air ambient air
l | Rocket
Indirect reaction Direct reaction

I I Solid propellant Liquid propellant

Propeller  Turboprop  Turbojet Athodyd

Mono propelled  Bipropelled
Ramjet Pulsejet

Propulsive devices are basically of two types: those which make use of atmospheric air as the main working
medium supplying oxygen for combustion of fuel, the atmospheric jet engines, and those which carry oxygen
required for combustion of fuel, the rockets. The performance of jet engines depends on the forward speed of
the engine and upon the atmospheric pressure and temperature. The rocket engine carries its own oxidizer for
the combustion of fuel and is, therefore, independent of the atmospheric air as well as the forward speed.

The devices which make use of the ambient air are further subdivided into indirect reaction and direct
reaction devices. The main propulsive devices are the following:

1. Propeller ltis an indirect reaction device. Earlier, it used to be driven by the reciprocating internal com-
bustion engine. A propeller handles relatively a large mass of air and accelerates it rearwards at low speeds.
It is the reaction of the rate of change of momentum of the air, called the thrust, which propels the aircraft.
The function of the engine is only to revolve the propeller at the desired speed. Piston engines are, however,
now used only for small aircrafts.

2. Turbojet A turboject is the most important direct reaction device. It utilizes a gas turbine power plant. In
a turbine, partial expansion takes place to produce just sufficient power to drive the compressor. The exhaust
of the turbine which is at a pressure higher than the atmospheric pressure is expanded in a nozzle given a
high-velocity jet. Compared to propeller units, in turbojet units a small mass of air flows through the unit,
but has a high rearward velocity. Turbojets are very efficient at high speed and high altitude, and inefficient
at low speed and low altitude.

3. Turboprop 1t is a combination of indirect and direct reaction devices (propeller and turbojet). Thrust is
produced both by propeller and jet. Besides the compressor the turbine also drives the propeller through a
reduction gear. It has the thermal advantage of a turbojet, combined with the advantages of the propeller for
efficient take-off, particularly for the heavily loaded aircraft.

4. Athodyd (Aero-thermodynamic Duct) The ram jet and the pulse jet are athodyds, i.e., a straight duct-
type of jet engine without a compressor and turbine wheels. The entire compression is obtained by a ram,
eliminating the need of a turbine. Athodyds are used for pilotless aircraft, helicopter rotor and missiles.
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5. Rocket It does not use ambient air for propulsion. Both the fuel and oxidizer are carried with the power
plant, and are accelerated from zero velocity to a high velocity at nozzle outlet. A rocket is the only propul-
sion device suitable for space travel.

Gas Turbines and Propulsion Systems

21.13.1 Turbojet Engine
The basic components of a turbojet engine are shown in Fig. 21.26 are:

(a) Diffuser The ambient air enters with a velocity equal to the velocity of the aircraft and this velocity is
slowed down in the diffuser. The kinetic energy of the airstream is converted to pressure energy. This is called
‘ram compression’.
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;

Compressor
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(b)

(a) General representation of the pressure, temperature, and velocities of the air and gases of combustion
as they pass through the engine, (b) Temperature-entropy diagram of a typical turbojet engine cycle

(b) Compressor Air leaving the diffuser with negligible velocity enters the compressor (usually an axial
flow type) and is compressed polytropically to high pressure.

(c) Combustion Chamber (cc) Compressed air enters the combustion chamber where the fuel is sprayed
and it is assumed that the combustion takes place at constant pressure.

(d) Turbine The products of combustion of high pressure and temperature undergo polytropic expansion
to an intermediate pressure such that the output of the turbine is just sufficient to run the compressor and the
auxiliaries of the unit.

(e) Nozzle The gases coming out of the turbine expand down to the ambient pressure and a high-velocity
jet leaves the nozzle. This produces the required thrust and the aircract is propelled in the forward direction.
This method of propulsion is best suited for aircrafts flying with a speed of 800 km/h or more.

The temperature — entropy diagram for a typical turbojet engine is given in Fig. 21.26(b). The entering
atmospheric air is diffused isentropically from velocity ¥y down to zero (¥, = 0) in process 0—1. The hot gases
leaving the turbine are assumed to expand isentropically (process 4'—6'), and the turbine work W, is equal to
the compressor work (W, = W,). The rise in ram pressure ratio p,/p , increases with Mach number. At a Mach
number of 2, the ideal ram-pressure ratio is 8. The thrust 7 is the magnitude of propulsive force created by the
Jet engine depending on the rate of change of air flowing through the engine. Since the weight rate of flow
of fuel through the engine is normally in the vicinity of 1% of the rate of flow of air, it will not introduce any
appreciable error if it is assumed that the working medium is comprised of air only. It can be expressed as

T= wa(Vj — V) newtons
where w, = mass flow rate of air, kg/s; V; = exit velocity of gases leaving the nozzle, m/s; and ¥ = vehicle

velocity through the air, m/s. Since the atmospheric air is assumed to be at rest, the velocity of air entering
the engine is the velocity of the vehicle V.
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Thrust power, TP, the time rate of development of the useful work achieved by the engine, is the product
of the thrust times the flight velocity of the vehicle, or
TP=TV,=w(V,- V)V, (21.12)
Propulsive power, PP, representing the energy required to change the momentum of the mass flow of air,
may be expressed as the difference between the kinetic energies of the entering air and the exit gases, or

2 2
pp Y B =V (21.13)
2
Therefore, the propulsive efficiency, 1,, may be expressed as
n _E_Z(VJ'—VO)VO_ v, __2 (21.14)
. T e 7 7 2 A 4 '
1+ f/_

o
This is also often called the Froude efficiency. As V —V,. 7, approaches maximum value. But as this occurs,

the thrust and propulsive power approach zero. Thus, the ratio of velocities (Vj/ V) for maximum efficiency and
for maximum power are not the same.

An alternate way of defining propulsive efficiency is to express propulsive power in terms of thrust power
and kinetic energy losses, i.e.,

PP = TP + K.E. losses.

The propulsive efficiency then becomes
TP _ TP

PP TP +KE. losses

The main components of a turbojet unit and of on open-cycle gas turbine unit are the same and as
such, the performance of a turbojet unit depends on the pressure ratio of the compressor, efficiency of the
individual constituents and the turbine inlet temperature. Since the turbojet unit propels an aircraft at different
altitudes with varying speed, the performance of these units is a function of the flight speed and altitude.
Figure 21.27(a) shows the variation of propulsive efficiency with flight speed and Fig. 21.27(b) shows
the variation of thrust power with flight speed at different altitudes. It is seen that as the aircraft velocity

m, (21.15)
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(a) Variation of the propulsive efficiency with flight speed, (b) Variation of thrust power with flight
velocity at different altitude for a turbojet engine
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V, increases, the propulsive efficiency increases. For a propeller driven aircraft the change of M, is greater
initially, but at speeds at which the propeller tip attains the sonic velocity, U~ falls off rapidly and Eq. (21.14)
is no longer valid. For aircraft speeds upto about 850 km/h, the propeller is the more efficient meaas of pro-
pulsion, but for speeds above this the jet engine is superior.

The thrust power decreases with increasing altitude because the density of the ambient air decreases with
increasing altitude, But it has been found that the drag on the aircraft decreases at a greater rate than the air
density and therefore, it is possible to fly the aircraft at a higher speed and with better economy.

21.13.2 Pressure Thrust

In aircraft gas turbine work it becomes important to use stagnation conditions, since velocity changes through

the unit is no longer negligible. Also, in general, temperature - measuring instruments such as thermocouples,

measure stagnation temperature and not static temperature: using stagnation conditions, the isentropic effi-

ciencies of the compressor and turbine, and intake duct and nozzle or jet pipe efficiency are redifined.
Referring to Fig. 21.28(b) of a typical jet engine, we have

T — T,
(ns )intake duct(ram) = 7?;:_7; ’ (ﬂs )compressor Ty, — Ty

— Ty — Ty
(ns )turbine = }T_'(BT;-?&’ (77; )nonle = %;_—?i
03 04s 04 Ss
For adiabatic flow, the total temperature remains constant and T, o = Ty, There is a loss of pressure in the
combustion chamber from 2 to 3.

It was assumed that the gases expand down to atmospheric pressure in the jet nozzle. In the case of a con-
vergent nozzle, the back pressure will normally be lower than the nozzle exit pressure. This phenomenon is
called underexpansion, which is explained in Chapter 17. '

Due to the difference in pressure between the nozzle exit and the atmosphere in which the aircraft is flying,
there will be an additional thrust, called the pressure thrust. In the case of supersonic aircraft, the pressure at
the air intake is higher than the atmospheric pressure because of compression through the shock wave formed,
which will reduce the net thrust calculated purely from momentum considerations. ‘

If we consider an aircraft like the turbojet in Fig. 21.28(a) with an air intake of area A,, inlet air pressure
P\, and a nozzle exit area 4,, exit pressure P, and the atmospheric pressure p,, we have from Newton’s second
law of motion,

F+ p, 4, ~ p, A, = rate of change of air in the direction of motion of the fluid

where F is the net force due to the hydrostatic pressure and friction exerted by the inside of the aircraft on the
working fluid in the direction of its motion,

F+pA —p4, Z’h(Vj_V;)

F= "’(VJ _Va)“Ple + P24
There is an equal and opposite force, R; exerted by the working fluid on the inside of the aircraft engine,
R= ”’(VJ _Va)_PlAl + P4
in the direction of motion of the aircraft.
Let us consider the forces acting on the aircraft. There is the force R, there is the total drag D due to the
air resistance, and there is a pressure force due to the atmospheric pressure acting on the projected area in the

direction of flight. In flight there is considerable pressure variation over the aircraft surfaces causing lift and
drag forces, the total drag force D and the form drag due to the vortices formed.
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Assuming that the aircraft silhouette (profile) area in the direction of flight is 4, then the net pressure force
in the direction of flight is given by

Po(A = 4) ~pyA - 4,) = pd, - 4,).
Since the aircraft is flying at constant velocity, the net force acting is zero, i.e,
R-D+pf4,-4,)=0
Therefore, the total thrust required to overcome the total drag force is given by
Total thrust (7) = D = R+ p, (4, — 4,)

=mV; =V,)— p4 + py A4, + po(4 — 4)
or, sz(Vj_Vo)‘*‘Az(pz*po)_Al(Pl‘Po)
For subsonic aircraft, however, the last term is zero, since then Py =D,

Total thrust = m (V; — ¥, )+ 4,(p, — p,) = Momentum thrust + Pressure thrust.
i~ o 2{P2 — Py
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21.14 ‘ TURBOJET ENGINE WITH AFTERBURNER

A turbojet engine cannot produce the extra thrust necessary during take-off, for high and for increased maneuver-
ing of military aircraft. So these units are equipped with additional devices for augmenting the thrust. The thrust
can be increased (i) by increasing the mass flow rate of the working fluid, or (ii) by increasing the jet velocity.

The mass flow rate of the working fluid is increased by injecting a mixture of water and alcohol (methanol)
into the ram air stream at the compressor inlet. The evaporation of the liquid mixture during the compression
process cools the air and the compressor work input decreases. The increase in mass flow rate through the
turbine and the nozzle increases the jet velocity.

The most widely used method for achieving thrust augmentation in the turbojet engine is the use of an after-
burner. This system requires burning of additional fuel between the turbine and nozzle and this is equivalent
to a reheater of the open-cycle gas turbine unit (Fig. 21.29). Since the increased thrust is required for a short
period of time, an increase in the specific fuel consumption is acceptable while the unit is developing the addi-
tional thrust. Thus, the working fluid enters the nozzle at a higher temperature and the jet velocity at exit would
increase. Since the velocity of the working fluid at inlet to the burner should be sufficiently low for stable
combustion and minimum pressure losses, a diffuser is provided between the turbine outlet and burner inlet.
Moreover, the exit area of the nozzle can also be varied so that the engine may operate as a simple turbojet.

Another diagram of a turbojet engine equipped with after burning or tail pipe burning is shown in
Figure 21.30. Tail-pipe burning consists of introducing and burning fuel between the turbine and the nozzle,
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raising the gas exit velocity and producing an increased thrust. Since the turbojet with tail-pipe burning consists
of a turbojet and essentially a ram jet(explained later), the engine is sometimes designated a turbo-ram-jet. Tail-
pipe burning is not only an augmentation device for improving the take-off and high speed performance of an
airplane, but it also may be considered a distinct type of engine for flight at supersonic speed.

21.15 ' TURBO-PROP ENGINE

A turbojet engine is quite efficient at flight sppeds above 800 km/h. However, at lower speeds it is not so
efficient. This led to the development of turbo-prop engines. A schematic layout of a turbo-prop engine is
shown in Fig. 21.31. It comprises of a geared propeller connected to a turbojet engine. The turbine of the
turboprop engine is bigger than that of the turbojet engine as it drives both the compressor and the propeller.
The propeller consumes about 80 to 90 per cent of the net power available from the turbine and the remaining
10 to 20% of turbine power is left to produce the jet thrust.

Turbo prop engines having two independent turbines have operating convenience for control. One of the tur-
bines drives the compressor, while the other drives the propeller through a reduction gear (Fig. 21.31). The turbine
speeds are from 11,000 to 40,000 rpm and propeller speeds are one-tenth to one-twentieth of it. The turboprop
engine cycle, Fig. 21.32 is the same as that of the turbojet engine cycle, except that the turbine expansion process
is greater. The energy supplied to the propeller, with no losses in the reduction gear, can be written as
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Entropy
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“ (@) Two-shaft turbo-prop engine, (b) Temperature-entropy diagram for a turboprop engine

Propeller power = 7, X7, ><[(h3 ~hy)—(hy —h) kﬂg (21.16)

where N, = reduction gear efficiency and M= propeller efficiency.

A propeller is used to produce a thrust by changing the momentum of fluid around it. Figure 21.33 shows
the flow through a propeller. It is assumed that the flow upstream at the section 1 is undisturbed and the
fluid moves towards the propeller with velocity V. Since the rotation of blades causes a reduction in pres-
sure on the upstream side of the propeller, the fluid is accelerated towards the propeller and it flows over the
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propeller with velocity ¥, and the pressure increases considerably. The velocity at the downstream section
4 is V,. The body of the fluid affected by the propeller is called ‘slipstream’, and it the pressure is assumed
constant all along the slipstream boundary and at sections 1 and 4. Thus the thrust exerted by the propeller
is given by

F.=pQWV,-V)=(p;—-p,)4 (21.17)

h+Vs
2

where 4 = cross-sectional area swept by the propeller 7 — , the average velocity of the upstream and

downstream fluids
Q = volume flowrate =4 x ¥/

The useful workdone by the propeller (rate) P = F xV = pQ (V,~ V) V,

Power input to the propeller = % pQ (V“2 - V,z)

PO (Vs —N
1 2 2
EPQ(V4 il )
_22n _n
AT AN

.". Propeller efficiency, n, =

(21.18) 3.0¢ Turboprop

Figure 21.34 shows the variation in the thrust produced by a
turbo-prop engine with flight velocity. Since the thrust produced 154
at lower flight velocity is considerably higher, the turbo-prop Turbojet
engine has a good take-off characterstics. From Fig. 21.27(a), it
is evident that the propulsive efficiency of a turbo-prop engine is . .
higher than that of a turbojet engine at lower flight velocity (up 300 600 900

to 800 km/h). The present trend requires higher flight velocities Flight speed, km/h
(M > 1) and this would require considerable research and experi- B Variation of thrust with
mentation before a turbo-prop will reach its peak performance flight speed for a turbojet
and service operation. and a turboprop engine

Thrust, KN

21.16 ! BYPASS TURBO-JET ENGINE

A bypass turbojet engine increases the thrust with-
out adversely affecting the propulsive efficiency

and fuel economy (Fig. 21.35). There is a fan at Fan \ Compressor ;  x Combustion chamber
the front intake driven by the main shaft. The part

Turbine

of the air drawn by the fan is sent over the com- T SN
bustion chamber (CC) through suitable ducting, to T S~ Exit
the exhaust unit, thus bypassing the engine. A por- nozzle
tion of air is sent to the engine compressor with :;" —

an added advantage of creating a supercharging

effect. The bypass ratio is selected according to

the aircraft operational requirement. ypass turbojet engine
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Its advantage is that the lower the velocity of jet efflux, the better the propulsive efficiency and fuel economy,
than a straight jet for a given thrust with less K.E. lost to atmosphere. This applies for aircrafts flying at subsonic
speeds and for long range. Installation and fire protection are also assisted by the air-cooled duct in the bypass
surrounding the hot parts of the engine.

21.17 ‘ ATHODYDS-RAMJETS AND PULSEJETS

It is earlier mentioned that at high aircraft speeds, turbojet is designed to take advantage of ram com-
pression. At a Mach number of 2, the ideal ram pressure ratio is nearly 8. At such high ram compression
there is no necessity of a mechanical compressor, and so no turbine is required to drive it. Ramjet and
pulsejet power plants, called athodyds utilize this principle. The word ‘athodyd’ is derived from the words
aero-thermodynamicduct.

21.17.1 Ramjet

A ram jet, also known as Lorin tube, is the simplest propulsion device among the air-breathing engine
category. It consists of a convergent-divergent diffuser, a combustion chamber and an exit nozzle or tail
pipe (Fig. 21.36). In the absence of compressor the compression of air is obtained by the diffuision of the
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high-velocity air stream approaching the diffuser inlet. The velocity is supersonic and the stream is first
compressed adiabatically while passing through the normal and oblique shocks. The velocity after the shocks
is subsonic while the diffusion takes place in the diverging section of the diffuser, the Mach number being
limited to about 0.25 at inlet to the combustion chamber (cc) so that the flame in the CC is stable. The ideal
ram pressure ratio increases with the increase in Mach number. (Fig. 21.37) At M = 2.5, the pressure ratio
P,/ p, is about 17 which is very high. However, there will be pressure losses due to shocks, wall friction and
flow separation as a result of which this pressure ratio is not obtained.

The fuel is sprayed into the CC with injection nozzles and a spark plug initiates the combustion process.
The air—fuel ratio is about 15:1 and the temperature after combustion is very high, about 2000 K, much
higher than that in the turbojet engines. The products of combustion expand through the nozzle producing the
required thrust. In the 7—s diagram of the ram jet (Fig. 21.38), the combustion process takes place at constant
pressure.

For ideal compression and expansion,

1 .
— -1
py/p = [1'*'12—1‘42]7

where p,, is the total pressure after isentropic compression, and
5

v-1 -1
P03/P4=[1+TM3]

20 A
15 - //
10 /

P2/py —

5.0 7
4.0 7
3.0
/
20 /
|

L]

1.5 v

1.0
0

0.4 08 1.0 14 1.8 2.0 24 28 3.0
Mach number

B 1col ram pressure ratio vs. Mach number of vehicles for sea level conditions




738 ' Basic and Applied Thermodynamics

Since the compression and expansion ratios are equal,

Thrust, T =myV, —mV, (21.19)

21.17.2 Ram-jet Characteristics
L.

w

1+12‘—11v1i2 =1+"’T“1M3, or M,=M,

y2
T

h __ ¥
JYRT,  RT,

The system does not contain any moving parts, is light in weight, is less costly and requires no main-
tenance.

The fuel consumption is much lower at higher speeds but is much higher at low and moderate speeds.
The system can accept a large variety of fuels.

The design of diffuser is quite difficult because the successful operation of ram jet is solely dependent
on this convergent-divergent passage.

The device is a continuous burning duct with a continuous flow of atmospheric air at high speeds and
this requires an elaborate device for fuel injection.

The device produces greater thrust per unit weight than any other propulsion device at supersonic
speeds except the rockets.

The system is not self starting, it cannot accelerate from a rest position and therefore requires a
launching device.

21.17.3 Pulse Jet

The pulse jet was developed in Germany during the world war II and is similar to ram jet. It also does not have
a compressor and turbine. The basic difference between a ram jet and a pulse jet is that the former is a con-
tinuously operating engine working on the Brayton cycle whereas the latter is an intermittent firing engine,
the operating cycle may be compared with Otto cycle and is self starting,

The incoming air is compressed in the diffuser. The compressed air flows through mechanically operated
non-return valves or shutters. These shutters are opened for incoming air and are closed by the expand-
ing gases coming out of the combustion chamber, Fig. 21.39. The compressed air mixes with fuel and the

Fuel atomizers'V’

Grid ‘G’
_ | Spark piug Venturi throat
A Air 1, &> Exhaust
) = Combustion e
y ] — Pt &> T iz
. e @ chamber " e
= g Air space
V-shaped non return
valves or shutter Ignition or hot bars ‘B’

valves ‘S’

Direction of motion

A pulse jet
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combustion process is initiated by a spark plug. Once the engine starts operating normally, the spark plug is
switched off and the residual flame inside the combustion chamber and hot ignition bars which retain heat
from the previous explosion is used for ignition in the succeeding cycles. During combustion the pressure
and temperature of the products of combustion increase and when its value is greater than the pressure at
the diffuser outlet, the mechanical valves are closed and the gases expand through the nozzle producing the
required thrust. After the gases leave the combustion chamber, the pressure decreases and the valves open to
allow the compressed air again. The air mixes with fuel and the cycle repeats.

Pulse jet engines are much cheaper than turbo-jet engines and are self starting (compressed air is supplied
to the system) but its propulsive efficiency is lower than the turbo-jet engines.

21.18 ' ROCKET PROPULSION

A rocket engine does not draw its oxidiser from the surrounding air. The fuel and the oxidizer, called the
propellant, is carried by the propelling unit. The function of the rocket is thus independent of speed and has
an unlimited operating altitude.

The rocket motors using a chemical fuel are generally divided into two categories: Solid propellant rocket
and liquid propellant rocket. A hybrid rocket combines solid fuel with a liquid oxidizer.

The schematic diagram of a solid propellant rocket is shown in Fig. 21.40. It consists of a seamless tube, usu-
ally made of steel, closed at one end. The tube is filled with solid propellant called the ‘grain’. The grain which
contains both oxidizer and fuel is electrically ignited and burns fully as there is no method to stop the burning.
The open end holds the convergent — divergent nozzle, through which the gases are ejected out at supersonic
speed. The reaction to the ejection of the high velocity gases produces the thrust of the rocket motor.

The grain configuration for solid propellant rocket motor varies according to the required thrust-time pro-
gram for the engine, on which depends the rate of burning. There are two principal types of solid propel-
lants: (a) heterogeneous or composite in which inorganic oxidizer such as potassium perchlorate or sodium
nitrate is dispersed in a fuel matrix like organic plastic, asphalt or oil mixtures (75% oxidizer and 25% fuel),
and (b) homogeneous propellant consisting of the colloid of nitroglycerine-nitrocellulose: C,H, (NO,), -
C¢H,0,(NO,),. The main advantage of solid propellant rockets is its simplicity, having no moving parts and
any fuel supply system. The disadvantages are that it has to be large enough to store the entire amount of pro-
pellant and is strong enough to withstand high pressures (40 to 140 bar) and temperatures (1600 to 3000°C).
There is no provision of cooling. These rockets are suitable for producing thrust for short durations. They are
used to power rocket projectiles, guided missiles and as boosters for aircraft as well as spacecraft. The use of
additional thrust by rocket motors at take-off is termed jet-assisted take-off (JATO) or rocket-assisted take-off
(RATO).

As stated earlier the solid propellant rocket differs from other engines in that total mass of fuel is stored
and burned within the combustion chamber. There is no fuel supply system.

C-D Nozzle

Direction . Exhaust

Thrust «—— of burning -~ gases

Engine wall

B¢ Schematic diagram of a solid propellent rocket
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The solid propellant rocket motor consists of a seamless tube, usually made of steel, closed solidly at one
end. The open end holds the nozzle which may be a single or multi-orifice type. Usually, small projectile
rockets (less than 10 cm in diameter) use single orifice nozzles, while larger ones use multi-orifice nozzles.
The single orifice nozzles have their axis parallel to the axis of the motor, while the axis of the orifices of
the multi-orifice nozzle may be at an angle to the axis in order to rotate the projectile, thus providing spin
stabilization. It should be noted, however, that JATO and large missile booster units are often single nozzle
type engines. The solid propellant rockets are divided into two main types according to the amount of surface
area exposed to burning. These two types are restricted burning and unrestricted burning.

The restricted burning rocket is one in which the propellant is constrained to burn on only one surface,
Fig. 21.41(a). The manner in which a cigarette burns is similar to the type of burning of a restricted burning
rocket. For example, the charge in a JATO unit is poured in while liquid and fits the chamber tightly so that
it is only free to burn on one end. The unrestricted burning rocket is essentially free to burn on all surfaces at
the same time, Fig. 21.41(b). The restricted burning rocket delivers a small thrust for a relatively long period
while the unrestricted burning rocket delivers a relatively large thrust for a short period. Table 18-1 shows an
approximate comparison between the two types of solid propellant rockets.

Liquid propellant rockets utilize propellant stores in the container outside the combustion chamber. The
liquid propellants are of two types: monopropellant and bipropellant. A monopropellant is a liquid that requires
no auxiliary material (oxidizer) for bringing about the release of the thermochemical energy. Nitromethane,
propyl nitrate and hydrogen peroxide (H,0,) are some monopropellants with only one storage tank. A liquid
propellant rocket consists of three major components, viz, (1) rocket motor, (2) propellant system, and (3)
controls. An advantage of a liquid propellant is its ability to discontinue combustion at any time.

The rocket motor consists of an exit nozzle, Fig. 21.42, a combustion chamber, propellant injectors and
an ignition system. As it was stated previously, most liquid fuel rocket motors are cooled by circulating fuel
around the engine walls. The cooling fluid may move axially, or may circulate in a helical path around the
motor. Normally, axial flow is only used for large size motors, because the amount of fuel used for propulsion
of small motors is not sufficient to fill the practical size passages that can be manufactured. Helical flow, on

Propellant Cg:; b;gte'?n Burns on end
charge \ \ surface only )
/ Exhaust

nozzle
Restricted burning
(@
Burns on
) outside and Ends prevented
Propeliant inside cylindrical from burning
charge \ surfaces by washers
AN AN AN
777227277777
7 s )
Unrestricted burning

(b)

\

§ Component parts of a solid propellant rocket
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Liquid bipropellant rocket systems

the other hand, is usually used in small motors, since it produces too much pressure drop to be practical when
considerable quantities of fuel are used as in large size motors.

Film cooling is another method of cooling in which a thin layer of fuel covers the exposed wall surfaces
from excessive heat. The thin film of fuel may enter the combustion chamber and nozzle through a series of
holes in the motor walls or walls of a special porous material that may be used. This method, however, reduces
the efficiency of the engine, because some of the fuel used for cooling is not burned. The best way to arrange
for the maintenance of the protective film is not yet known.

The combustion chamber is usually of cylindrical shape (Fig. 21.42) with one end closed and the other end
terminating at the entrance to the exit nozzle, which is usually of the DeLaval type. There are no obstructions
on the walls between the combustion chamber and the nozzle. In the liquid propellant rocket, the combustion
chamber pressures vary from 20 to 50 bar and combustion chamber temperatures from (1650 to 3350)°C. The
exhaust gas velocities vary for 1800 to 4000 m/s.

Injection of the fuel and oxidizer into the combustion chamber is accomplished through injectors, which
have the same function as those in a compression ignition engine, i.e., atomize and mix the propellants so that
a fuel-oxidizer mixture results which can be readily vaporized and burned.

To start a rocket motor an electrical igniter, may be necessary for some propellants. However, propellants
which ignite upon contact with oxidizer are more desirable. These self-igniting propellants are called hyper-
golic propellants.

The propellant system employs either a pressure feed or a pump feed to transfer fuel from a storage tank
to the combustion chamber.
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In the pressure feed system, Fig. 21.42(a) the pressure exerted by the inert gas stowed under high pressure
forces the fuel and the oxidizer through the proportioning valves or orifices that regulate the fuel-oxidizer
ratio into the combustion chamber against the combustion pressure, The pressure feed system is simple,
inexpensive and reliable. It is limited, however, to small or short duration rockets, because the weight of tanks
becomes prohibitive when this system is used in large rockets. The weight of tanks capable of carrying sev-
eral tons of propellants and being pressurized to pressures of 300 to 750 psia would be greater than the more
complex pump feed system described below.

In the pump feed system, Fig. 21.42(b), a pump is utilized to force the propellants into the combustion
chamber. This feed system is adaptable to rockets of high power and long duration. The pumps are driven by
relatively small turbines which may or may not have their own combustion chambers. The turbines having
combustion chambers will be operated by the products of combustion of monopropellant (explained later)
such as hydrogen peroxide or the main rocket fuel and oxidizer. The turbines having no combustion chambers
can be driven by the combustion products bled off from the main rocket motor.

There are advantages and disadvantages to each of these three systems and the choice is based upon fac-
tors beyond the scope of this book. It may be of interest, however, to note that the World War II designed V-2
used the monofuel sysizm, and the more recently designed and continuously modified “Viking” rocket uses
a chamber bleed system.

A disadvantage in the use of the monopropellant is that the extra weight of the turbine fuel may be from
8 to 5% of the total weight. Since this is a low energy fuel, the over-all efficiency of the rocket is reduced.
A disadvantage of the main fuel system is that the rocket fuels themselves are usually too powerful to be used
by a turbine, while a disadvantage of the chamber bleed system is that it requires an auxiliary starting system.

21.18.1 Basic Theory of Rockets

Figure 21.43 shows a schematic diagram of the basic components of a liquid bipropellant rocket engine. It consists
of an injection system, a combustion chamber, and an exit nozzle. The oxidizer and fuel burn in the CC producing
a high pressure. The pressure produced is governed by the weight rate of flow of the propellants, the chemical
characteristics of the propellants, and the cross-sectional area of the nozzle throat. The gases are ejected to the
atmosphere at supersonic speeds through the nozzle. The nozzle converts the pressure energy of the gases into
kinetic energy. The reaction to the ejection of the high-velocity gases produces the thrust of the rocket engine.

The thrust developed is a resultant of the pressure forces acting upon the inner and outer surfaces of the
rocket motor. The internal forces acting on the engine are

Resultant internal forces = w, Vi + pi4; (newtons)

Combustion Exit —] A
"' chamber nozzle

Fuel

J % 77777777777, W /
Cf:% d Fo
t 7 v %

Oxidizer

Components of liquid bipropellant rocket motor
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where w, = weight rate of flow, kg/s, V, = exit jet velocity relative to nozzle, m/s, P, = exit static pressure,
N/m? and 4;= exit area, m?.

The resultant external forces acting on the rocket motor are p, A, where p, is the atmospheric pressure,
N/m?. The thrust which is a resultant of the total pressure force, becomes

T =w,¥,+ 4;(p, - p,) newtons (21.20)

The above equation shows the effect of atmospheric pressure on the thrust of a rocket engine. The thrust is
maximum when p; = 0, i.e., operating in vacuum.

In testing a rocket engine, the thrust, the total propellant consumption, and the total time are readily mea-
sured. The thrust can be expressed as

T =w, -V, newtons (21.21)
where Ve is the effective jet exit velocity defined by

A(p;—p,)
V. =V N °
je = j+ m/s

Wp

The thrust power, TP, developed by the rocket engine is

TP =TV, = w, Vje V, (watts)

The propulsive efficiency, 7, is given by

I
T = pp
where the propulsive power is the thrust power plus the kinetic energy lost in the exhaust.
K.E. loss = wp( Vi V)2 T A
n, = TP _ WijeVo
¢ - 2 R, Air
TP +KE loss wViVo +{w,(Vie =V,)°/2 Thrust T resistance
2V,
SLIC4 (2122 I 1
1+, /V)
Specific impulse, 1., is the thrust produced per unit weight of propellant F:e'
consumption Oxidizer

It is desirable to use propellants with the greatest possible I_ p» since this

allows a greater useful load to be carried for a given overall rocket weight. Nozzle
Let us consider an accelerating rocket as shown in Fig. 21.44. It is l
assumed that R = air resistance, m, = initial mass of rocket, w = rate at Vj

which the propellant burns and m = mass of the rocket and propellant at a
given time. Assuming that the pressure at the nozzle exit is the same as the
ambient pressure and the momentum of the system does not change with
time, the equation of linear momentum can be written as

Analysis of rocket
acceleration

— R - mg+ T =ma, wherea = acceleration of the rocket. (21.23)
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21.19 ! NUCLEAR ROCKETS ~|_ Propellant
tank
The main components of a nuclear rocket engine are shown in ’

Fig. 21.45. A nuclear reactor replaces the combustion chamber.
Liquid hydrogen is used as working fluid and is heated by the
reactor before it expands through the thrust-producing nozzle.
A small fraction of the heated gas, propellant, is extracted for
driving the turbine which drives the propellant pump.

Main components of a nuclear
rocket engine

Example 21.1

In a gas turbine plant, air enters the L.P compressor having a pressure ratio of 3.5 and efficiency 0.85 at
1 bar and 300 K. It then enters the intercooler where it is cooled down to 310 K. The cooled air is further
compressed in the H.P. compressor also having a pressure ratio of 3.5 and an efficiency of 0.85. It enters the
regenerator having an effectiveness of 0.8. The gases coming out of the combustion chamber enter the H.P
turbine of efficiency 0.88 at 1100 K. The H.P. turbine drives the compressor and there is a reheater between
the two turbines. The gases enter the L.P. turbine at 1050 K and the exhaust gases coming out of L.P, turbine
of 0.88 efficiency are used to heat the air in the regenerator before leaving to the atmosphere. Determine
(a) the power output, and (b) the overall efficiency of the plant. Take c, Jor air as 1.005 and for gases as
1.15 kJ/kgK, and ~ for air as 1.4 and for gases as 1.33.

Solution The flow and T—s diagrams are shown in Fig. Ex. 21.1.
py=1bar, T, =300K, p, =35bar, T, = 310K, p, = 12.25 bar, T, = 1100 K, T, = 1050 K

-1

L, [P
4 P
T,, = 300 (3.5)°2% = 429.26 K
T, - T, 26—
T,=T, +—ZS——‘:300+%= 452.076 K

c
Y-

T, =T, [P% ] 7 =310(3.5)"% = 4435
3

—
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To atmosphere
Intercooler THegenerator

L.P. :
Cvompleaaul )(L H.P. turbine[ ™Y Reheater
H.P. compressor ~
PWW
Air

4 |L.P. turbine ]

.

r,-1,+% =5 _ 310+i4i3'378—;319 — 467.15

c
Power input to the compressor

W_=1.005 [(452.076 — 300) + (467.15 — 310)] =310.76 kJ/kg
Power output of the HP turbine

(W) = 310.76 = 1.15 (1100 — T))

T, = 829.77 K
T.—-T
£ T =y =088
T6 _T7s

T, =T, (T, —T,)/ny =1100 — (1100 —829.77)/0.88 = 792.92 K.
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Pressure ratio for the H.P. turbine

o 133
Ps | T _[ 1100 ]0433 _
p |\, 792.92
12.25
= ————=3.275 bar
P1=3
-Y__l_
0.33
L |2 (32751
T, by
T,, = 780.52 K

Ty —T, = (T — T, ) ny = (1050 — 780.52) x 0.88 = 050 — T,
R T,=812.86 K
Power produced by the L.P. turbine
(W = 1.15 (1050 — 812.86) =272.71 kl/kg

Total power output = 310.76 + 272.71 = 583.47 kl/kg
Work ratio = 27271 = 0.467 (with intercooling)
583.47
0, to system having intercooling
= (1.15 x 1100 — 1.005 x 467.14) + 1.15 (1050 — 829.77) = 1048.5 kJ/kg
272.71
plant = To485 0.26 or 26% Ans.

Example 21.2

The blade velocity at the mean diameter of a gas turbine stage is 360 m/s. The blade angles at inlet and
exit are 20° and 52° respectively and the blades at this section are designed to have a degree of reaction of
50 percent. The mean diameter of the blades is 0.450 m and the mean blade height is 0.08 m. Assuming that
the blades are designed according to vortex theory, calculate (a) the flow velocity (b) the blade angles at
the tip and the root (c) the degree of reaction at the tip and at the root of the blades.

Solution  Given: §) =20°=ay, 3, =52° = o,V =360m/s, D,, =0.450 m, h, = 0.08 m
(Fig. Ex. 21.2(a)).

Vetan B, — Vi tan B =V, =360
V;(tan 52° — tan 20%) = 360

o= —30 393y
1.2799-0.364
The flow velocity at the tip and root is dlso the same, i.e. 393 m/s. Ans. (a)

Blade tip: Using free vortex theory,

Vi r = contant
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AViy,

Y,

DN e -

0.45
9.
T

_wD\N
' 60

b,

—=360x-L

"n

04 =0.265 m

mDuN D,
60 D,

m

0.265

=360x —— =424 m/s

0.225

Vy,, =V;taney =V, tan 3, = 393 tan52°

= 503 m/s
Ve, tn =Va 1
= 503x0.225 _ 427 m/s
" 0.265

Using the condition of constant specific work,

AV,

_AV, W, Vi (tanf, +tan g, Vi

w, Vb

t

%,

't
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_ 393(tan20° +tan52°)x360

424
Blade velocity diagram at the blade tip is shown in Fig. Ex. 21.2(b).

= 548.57 m/s

Vetangy =V,
393taney, = 611.76
oy, =57.28°
Vetana,, = AV, -V, =78579-611.76
= 174.03
a,, =23.88°

Fixed blades (root): oy, =57.28°, a,, =23.88° Ans. (b)

For moving blades
Vetan By, =V, —V, =611.7-296=315.76

B, = 38.78°
Ve tan B, =V, +V; tanay,, = 296 +174.03 = 470.03
B,, =50.1°
Moving blades (root): (3, = 38.78°, 3, =50.1° Ans. (b)
Vi tangy, = th
oy, =47.37°
Vetanay, = AV, -V, =548.57-427=121.57
L 12157
* 393
ay =17.19°
Fixed blades (tip) oy, =47.37°, oy, =17.19°
Similarly for moving blades,
‘ Vetan By, =V, -V,
393tan B, = 427424
B, =0.44°
V, tan 3, = 424 + 121.57 = 545.57
B, =54.23°
Moving blades (tip) 3,, = 0.44°, 3, = 54.23°
Blade root
r =0.225-0.04=0.185m
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%, =360 x 2185 _ 206 mys
‘ 225
lem rm = VW" ';'
s _ 503 x 0.225 — 611.76 m/s
y 0.185
AV, W,
AV, =wabs 23259368 ) 0s 00 s
' Vs, 296
Blade velocity diagram at the blade root is shown in Fig. Ex. 21.2(c)
The degree of reaction is given by
g Vetan g, —tang)
2K
393(tan 54.23° — tan 0.44°
Atthetip, R= ( ) =0.64 or 64% Ans.
2x424
393(tan 50.1° — tan 38.78°)
Attheroot, R= =0.26 or 26% Ans.
2x 296
Example 21.3

Solution Polytropic efficiency 7p is defined by

dr ¢, dT ¢, dT
T T T T RT
dh P dp
2 2
dp_S rdT
W) ===
P[p R‘[T
npln—pl- 7 m&
n -1 1T
(r=1)m,
sy
T, D

I, =1 125[—; =78825K

The products of combustion enter an axial flow gas turbine at 8 bar, 1125 K and leave at 1.5 bar. There are
11 stages, each developing the same specific work with the same stage efficiency. The axial velocity of flow
is constant at 110 m/s and the polytropic efficiency is 0.85. At a particular stage, the mean blade velocity
is 140 m/s, the stage has 50% reaction at the mean blade height and the specific work output is constant
across the stage at all radii. Assuming that v = 1.33 and ¢, = 1.15 kJ/kgK for gases, estimate (a) the blade
angles at inlet and exit, (b) the overall isentropic efficiency of the turbine, and (c) the stage efficiency.
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For isentropic expansion,
-1

- 0.25
Ly _ [22—] T = [2] =0.658
I, P 8

T,, =1125 % 0.658 = 740.29 K
.. overall isentropic efficiency of the turbine
_TI,-T, 1125-788.25

=0.875 or 87.5%

"L o1, 1125-74029
Work output of the turbine
Wy = c(T, — T, = 1.15 (1125 - 788.25) = 387.26 kl/kg

87.26

*. work output per stage 3 =35.2kl/kg

From the velocity triangles at inlet and exit of the blades,
n=v,r ="

Work output per stage = (le +V., )Vb =35.2x10 J/kg

3
v, +v, =22X10 _ 95143
P T T a0
sz = VwI _Vb
V +V, —V,=25143
v, =218 019571 ms
o =tan' 10 _ 29330 q,
195.71

These are the blade outlet angles measured with the direction of rotation.

Ans. (b)
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110
B = tan~! 19571120 =63.14° (blade angle from direction of rotation)
Enthalpy drop per stage = 35.20 kJ/kg

Temperature drop per stage = ?—5% =30.7K

T/=1125-30.7=10943K =T, - T/

('7-1)'7p

0.2125
L, \p P

Now

1
, A
£1_=[1094.3]0.2125 _ 0878
j 2 1125
Isentropic temperature ratio
T 11

s _(0.878) 7 =0.968
L
T,, = 1125x0.968 = 1089.1 K

_ 1125-1094.3

Stage efficiency, 7, = 1125 —10891 =0.853 or 853%

Example 21.4

p 751

Ans. (a)

Ans. (c)

Assume that the nozzle is convergent.

2
Solution K.E. of air at inlet =% v [@52(%99] - % x (222.2)* Nm/kg = 24.7 kl/kg

T, —T, =%=24.6K

T, = [(— 50) + 273] + 24.6 = 247.6K

Ty — T
Intake efficiency, 0.9 = 2= 20
Tn-To

Ty —T, =09 x246=221K
Tys =22.14(—50+273) = 245.1K

A turbojet aircraft is flying at 800 km/h at 10,700 m where the pressure and temperature of the atmosphere
are 0.24 bar and — 50°C respectively. The compressor pressure ratio is 10/1 and the maximum cycle tem-
perature is 1093 K. Calculate the thrust developed and the specific fuel consumption using the Jollowing
particulars: entry duct efficiency = 0.9, isentropic efficiency of the compressor = 0.9, stagnation pressure
loss in the combustion chamber = 0.14 bar, calorific value of fuel = 43.3 MJ/kg, combustion efficiency =
0.98, isentropic efficiency of turbine = 0.92, mechanical efficiency of drive = 0.98, jet pipe efficiency =
0.92, nozzle outlet area = 0.08 m?, c,= 1.005 KJ/kg K and v = 1.4 for air, ¢, = 1.15 kJ/kg K and v = 1.333.
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2 14
Po _ h v~1 ={245.l]0.4 =(1.1)3'5 —1393
P T 223

Py =1.393 x 0.24 = 0.334 bar
For the compressor,

T i 04
_023=[&]” =(10)1% =1.931
Ty, Poy
Ty =247.6 X 1.931=478K
. = IZ)ZE _I;)l =09
Toz _TOI
T, —T,, =ﬂ;;“J=256K

Ty, = 247.6 + 256 = 503.6 K
Py =10 X p, = 10 x 0.334 = 3.34 bar
Pg3=3.34-0.14 = 3.2 bar
Since W_= W, by energy balance
__1.005(503.6 — 247.6)

T —T. = =2283K
03 o4 1.15 x 0.98
T,, = 1093 - 2283 = 864.7K
_ T Ty

=0.92

r =
TOS —T04s
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Ty —Tog, = % =2482K

T, = 1093 —248.2 = 844.8 K

a2 135
-1
Pos _ [_Tm ]’ - [_1093 ]“” =2.803

2o T 8448
32
=22 _1.156b
Poe =2 803 o

For choked flow in the nozzle, the critical pressure ratio is given by
1333

y
Pc 2 |t =[ 2 ]0.333 054
Po  \7+1 2.333
P = 0.54 x 1.156 = 0.624 bar
Since the atmospheric pressure is 0.24 bar, the nozzle is choked and hence the nozzle exit velocity
is sonic (Fig. Ex. 21.4(b)).
5 -2 __2 _ T, =864.77 x 0.857 = 741.33K
Ty 7Y+1 2333

Jet pipe efficiency = Toa=Tos _ 0.92
04 — Toss
Tys, = 864.7— 864.7-741.33 _ 730.6 K
0.92
Ea 1333
0
Pos _ [Ies_]’ = [___864-7J°'”3 =1.963
Ps Toss 730.6
1.156
=—"——=0.589 bar
Ps = 1963
c,(v—1
r=507D _115x0333 ) oc0n Kikg K
~ 1.333
bR _028T3x 7413 _ s

Ps 0.589 x 10°
Jet velocity, ¥, = /YRT, = /1.333 x 287.3 x 741.3 =532.8 m/s

. 0.08 x532.8
"n=———"
3.616

Momentum thrust = rr(V; ¥, ) = 11.79 (532.8 - 222.2) = 3661 N
Pressure thrust = (p, - p,) 4 = (0.589 — 0.24) x 0.08 x 10°=2792 N

Mass flow rate, =11.79 kg/s
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s total thrust = 3661 + 2792 = 6453 N Ans.
Heat supplied, Q, = ric, (T3 —Tp,)

= 11.79 x 1.15 (1093 — 503.6) = 7990 kW
O, = x C.V.x 1,

Fuel burning rate, m, = N0 =0.188 kg/s
43,300 x 0.98
3
Specific fuel consumption = M = 0.0291 ﬁ Ans.
6453 KNs

Because of the low value of fuel — air ratio, one can assume that the mass flow rate of air is equal
to the mass flow rate of gases.

| Example 21.5

A turbojet Sflying at 850 km/h has an air mass flow rate of 50 kg/s. The enthalpy drop across the nozzle is
200 kJ/kg and the nozzle efficiency is 0.9. The air fuel ratio is 80 and the heating value of the fuel is 40 MJ/kg.
Estimate the propulsive power, thrust power, propulsive and thermal and overall efficiency of the unit.

Solution Velocity of aircraft,V, = 850 x 1900 =236.11m/s
3600
A/F ratio = 80.
50

g = 2= 0.625 kgls

Velocity of gases at exit from the nozzle, V..

= J2¢, (Ak)n, =2 x 1005 x 200 x 0.9 = 601.5 m/s

Thrust, T = .V, —m,V, = 50.625 x 601.5 — 50 x 236.11 = 18.645 kN
Thrust power (7P) = TV, = 18.645 x 236.11 = 4402.37 kW Ans.

Propulsive power ( pp) is the energy required to change the momentum of the fluid and is expressed
by the difference in K.E. as given by

PP = %('ha +’hf)Ve2 —%maVoz

- =L (50.625) x (601.5) — L x 50 x (236.11)°
2 2

=772 MW Ans.

" TP 4.402
Propulsive efficiency, n, = — = —— = 0.567 56.7 Ans.
opulsiv iency, 7, PP = 772 or ns
Thermal efficiency = PP 7.72 =031 or 31% Ans.

g xCV _ 0.625 x 40
Overall efficiency =7, x 7, =0.31x 0.567 = 0.176 or 17.6% Ans.
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Example 21.6

Air at the ambient conditions of 0.56 bar and 260 K enters the compressor having a pressure ratio of 6
and an efficiency of 0.85 of a turboprop aircraft flying at a speed of 360 km/h. The propeller diameter is 3
m, propeller efficiency 0.8 and gear reduction efficiency is 0.95. The products of combustion enter the gas
turbine having an expansion ratio of 5 and an efficiency of 0.88 at 1100 K. Determine the air — Suel ratio,
thrust produced by the nozzle with an efficiency of 0.9, thrust by the propeller and the mass flow rate of air
Sflowing through the compressor. Given: C. V. of fuel = 40 MJ/kg.

3
Solution  Velocity of aircraft, ¥, = 360 <107 _ 100 m/s
3600
Compressor: p, = 0.56 bar, p, = 6 x 0.56 = 3.36 bar,
% =6"%0 =1.716, T, =260 x 1.716 = 446.16 K
1
N = TuT g5, T, =260+ 20162260 _ 40 01
T,-T, 0.85

Power input to compressor
W.=c,(I,-T)

= 1.003 (479.01 - 260) = 220.1 kJ/kg
Combustion chamber
By making an energy balance,

G, T+ xC.V.=C, Ty (14 m)

Assuming Cpa = Cpx s

40,000
47901 +m, x —2
"~ 1.005

=1100(1+ ri, ) s

m; =0.016 kg/s
air — fuel ratio = L =——=26223 Ans.
m;  0.016
Turbine
3=1100K, p, = 6 x 0.56 = 3.36 bar

Py = % =0.672 bar

Temperature at the end of isentropic expansion
T, =T,/5°% = 64444 K

Iy =T, —(T; —T,,)/ny =1100—(1100 — 644.44)/0.88
=699.11K
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Power output of turbine, w,=01+ mf)Cp(T3 -T)

= 1.016 x 1.005 (1100 — 699.11)
= 409.34 kJ/kg air
Power available for propeller = 409.34 —220.1 = 189.24 kJ/kg

Nozzle
T, _ [ P ]0'286 =[ 0.672 ]"'2“ 1053

T, |ps 0.56
1, =2 _g1336k
1.053

Velocity of gases at nozzle exit

V; = /2 x 1.005 x 0.9(699.11 — 663.36) = 254.31 m/s

Thrust by jet =m, V. —m.V, = 1.016 x 254.31 —1 x 100

— 158.38 N/kg air
Propeller v
Propeller efficiency = 0.8 = ;0-
V= 100 _ 125 m/s
0.8

V,=250-100 = 150 m/s
0= %dZ XV = %(3)2 x 125 = 883.7m*/s

Thrust power of the propeller

5
1, 056x10° 883.7(1507 100°)
2~ 287 x 260

2

:%PQ(Vf—VOz):

3
=4142.3k—g3><m—><“‘—2
m S S

= 41423 kl/s Ans.

Reduction gear efficiency = 0.95
41423

Power to be supplied by the turbine = 0.95 =4360.3 kW
Mass flow rate through the compressor
4360.3 kW
=——>——=23.04kg/s
" = 18923 k)/kg g/ Ans.
41423 x 0.8
Thrust produced by the propeller = 2R X P2 —33.14kN Ans.

100
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Example 21.7

A rocket is fixed vertically starting from rest. The initial mass of the rocket is 15000 kg and the stored pro-
pellant burns at the rate of 125 kg/s. The gases come out at a velocity of 2000 m/s relative to the rocket.
Neglecting air resistance, calculate (a) the velocity it will attain in 70 seconds, and (b) the maximum height

that the rocket will attain.

Solution Neglecting air resistance, the linear momentum equation (Eq. 21.23) can be written as
T —mg=mdV/dt and m=m, —my t
where m, = initial mass of rocket and m, = rate of burning fuel.

T—(mi ——rhpt)gdt

dv = -
m; — myt
= —T—,dt — gdt
m; — mpt
On integration,
mt
V= --Lln[l ———-] gt
m, m,
since T=mV, V.= T/ =2000 m/s
My

After 70 seconds, the velocity of the rocket will be
125x 70

V' =-20001n]|1- —9.81x70
15000
=1064.24 m/s Ans. (a)
The height travelled during the first 70 seconds,
125¢
dt = 2000 ln - t| dt
h=J,v f 1 15000] ‘

=28.4km

The rocket will be assumed to continue its flight upward until its K.E. is converted to PE.

%mV2 = mgh,
h, = (1064.24)" /2 x 9.81
= 57.73 km.

Maximum height = 28.4 + 57.73

= 86.13 km. Ans.
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Example 21.8

The pressure and temperature developed in the combustion chamber of a chemical rocket engine are
2.4 MPa and 3170 K respectively. The atmosperic pressure is 55 kPa. The pressure at the nozzle exit
is 85 kPa and the cross-sectional area at the nozzle throat is 0.06 m?. The nozzle efficiency is 0.91,
the coefficient of discharge is 0.98, v = 1.25, R = 0.693 kJ/kgk, the half angle of divergence is 12:
Determine the thrust and the specific impulse.

Solution  Jet velocity, V; = \/2(hc —h) = \/2%(7; -T)

7=l

v

21
P,

2¢,T, |1-

-1
~

29RT,
v-1

£d]
P.

1—

0.25
2x1.25x%0.693x 3170 1_[ 55 }m

0.25 2400

j
=3271.94 m/s.

The thrust developed by the nozzle is directly proportional to the axial velocity, a correc-
tion factor is used to account for the nonaxial flow of gases. The correction factor is given by
k= (1 +cos a) /2, where a is the semidivergence angle. The actual velocity of gases is

(Vj)w = \/—TI . k x_theoretical velocity

(V)act =0.91x(1+cos12°)/2 x 3271.94

}
= 3086.9 m/s.
The velocity at the throat is sonic.
The mass flow rate, m
aH 2

ol 2 |-t
=RAV, = AP |—|——
A% = 4R 2 2

Throat




21.1
212

213
214

215

21.6

21.7

21.8

21.9

21.10

21.11

21.12

(see chapter 17)

=0.06x2.4%x10° 125

693x3170

[ 2
2.25

Actual mass flow rate = 0.98 x 63.93 = 62.66 kg/s

(M) =PAV;

which gives 4, = 0.2589 m?
Thrust produced = mV; + 4, (P. — Po)
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1

2253

]0'25 —63.93 kg/s

= 62.66 x 3086.9 + 0.2589 (85 — 55) x 10°

=201.18 kN
201.18x10°

Specific i —
pecific impulse 62.66

=3210N/kg/s

Ans.

Ans.

What are the applications of gas turbines?

How does the open-cycle GT plant compare with
the closed-cycle GT plant?

Explain the advantages of a GT plant.

Give an analysis of the GT plant. What is the effect of
pressure ratio on GT plant output and efficiency?

Derive the expression of optimum pressure ratio
for a GT plant having compressor efficiency 7,
and turbine efficiency 7;.

What is work ratio of a GT plant ? Show that it is

-1
Ti =
=121, 7
r, =1 T A
Explain the effect of regeneration on the perfor-
mance of a GT plant with sketches. What is its

effectiveness?

Explain the effects of intercooling and reheating
in a GT plant.

Draw the schematic diagram of a GT plant with
intercooling, reheating and regeneration and
define the overall plant efficiency.

What is a semi-closed cycle GT plant?

Discuss the GT plant performance under variable
loads.

Compare centrifugal compressor with an axial
flow compressor.

21.13

21.14

21.15

21.16

21.17

21.18
21.19

21.20

21.21
21.22

21.23

21.24

21.25

Explain with suitable sketches the operation of
combustion chambers in a GT plant.

Define combustion efficiency. What are the per-
formance criteria of a CC?

Explain the cooling of GT blades. What is degree
of reaction ? Draw the velocity triangles at inlet
and exit of the blades.

Explain vortex blading. What are the basic
requirements for a gas turbine?

Explain the effect of water injection on gas tui-
bine performance.

Discuss the use of different fuels in a GT plant.

Discuss on the different materials used for GT
plant construction.

On which laws does the jet propulsion system
depend? Explain.

What is the propulsive force? What is thrust?

Enlist the various propulsive devices for aircrafts
and missiles.

How does a turboprop differ from a turbojet
engine? Explain propulsive power and propulsive
efficiency.

Explain the operation of a propeller. What is an
athodyd ? What is a rocket ?

Explain with a neat sketch the operation of a tur-
bojet engine. Draw the 7—s diagram.
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21.26

21.27

21.28

21.29

21.30

21.31

21.32
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Define propulsive power, thrust power and pro-
pulsive efficiency.

Explain the effect of flight speed on propulsive
efficiency and the thrust power.

What is the effect of afterburner in a turbojet
engine? Explain with a neat sketch.

Explain the operation of a turboprop engine with
neat sketches.

Explain the momentum theory of propellers.
What is the effect of flight speed on the thrust for
a turbojet and a turboprop engine?

What is a bypass turbojet engine? What is its
advantage?

Explain the operation of a ramjet engine. What is
the thrust produced?

Estimate the pressure ratio at which the specific
output is maximum if the temperature at the com-
pressor inlet is 300 K and that at the turbine inlet
is 1000 K. The isentropic efficiencies of the com-
pressor and turbine are 0.85 and 0.88 relatively.
Also, obtain the mass flow rate per kWh of air and
fuel if the calorific value of fuel is 40 MJ/kg.

(dns.~, = 5,m, =30.27 kg/kwh, rir; = 0.375 kg/kwh)

21.2

213

The pressure ratio of the compressor in a GT plant
is 7. Air enters the compressor at 1 bar, 25°C, and
the temperature at the turbine inlet is 1050 K.
The gases leave the turbine at 1 bar. The combus-
tion efficiency is 0.89 and the pressure drop in
the combustion chamber is 0.11 bar. Taking 7, =
0.82 and ;. = 0.85, estimate (a) the thermal effi-
ciency of the plant, (b) the work ratio, and (c) the
specific fuel consumption. The heating value of
the fuel is 42 MJ/kg. Take C, for air as 1.005 and
C, for gases as 1.11 kJ/kgK.

(Ans. (a) 22.53%, (b) 0.3633, (c) 0.38 kg/kwh)
Air at 1 bar, 300 K enters the compressor of a gas
turbine unit and comes out at 8 bar. The compres-
sor is driven by an H.P. turbine, and the L.P. tur-
bine drive a generator. The isentropic efficiencies
of the compressor, H.P. turbine and L.P. turbine
are 0.82, 0.85 and 0.85 respectively. Determine

21.33

21.34

21.35
21.36

21.37

21.38

21.39
21.40

214

21.5

Explain with a sketch the operation of a pulse-jet
engine.

What is the principle of operation of rocket pro-
pulsion? What is ‘grain’?

What do you mean by JATO and RATO?

What are restricted and unrestricled burning of a
solid propellant rocket?

Explain the operation of liquid propellant rocket
with sketches. What is a hypergolic propellant ?
Derive the expression for thrust produced in a
rocket. What is propulsive efficiency? What is
specific impulse?

Explain a nuclear rocket engine with a sketch.
What do you mean by je thrust and pressure thrust

in aircrafts and missiles ? Derive the expression
for total thrust in a subsonic aircraft.

Tt

the net power developed, the work ratio and the
overall efficiency of the unit if the air flow rate is
5kg/s, the air — fuel ratio is 62:1, the maximum tem-
perature of gases at the H.P. turbine inlet is 1000 K.
Take C,, of air as 1.005 and C, for gases as 1.11 kJ/
kgK. The heating value of fuel is 40 mJ/kg.

(Ans. 698.53 kW, 0.318, 21.65 %)

Air enters the compressor of a gas turbine equipped
with a regenerator at 1 bar, 300 K. The pressure
ratio of the compressor is 6.6, its efficiency is 0.82.
The regenerator effectiveness is 0.85, the combus-
tion chamber efficiency is 0.8 and the turbine effi-
ciency is 0.85. The pressure drop in the regenerator
on the air and gas side is 0.06 and 0.05 bar respec-
tively. The heating value of the fuel is 40 mJ/kg
and the air — fuel ratio is 65:1. Estimate the effi-
ciency of the plant with and without a regenerator.

(Ans. 28.95 % and 19.15 %, with and without
regenerator.)

In a closed-cycle gas turbine cycle, helium at
15 bar, 300 K enters the compressor (n, = 0.8)
and comes out at 60 bar. The gas is heated in a
heat exchanger to 1000 K before entering the
turbine (7 = 0.85). The exhaust from the turbine
is cooled to the initial temperature in a cooler.
Calculate the cycle efficiency and the net output



21.6

21.7

21.8
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for a flow rate of 75 kg/s. Take C_. = 5 kl/kg K
and v = 1.5. (Ans. 19.6 PVo, 35.54 mw.)

A simple open-cycle gas turbine plant works
between the pressures of 1 bar and 6 bar and
temperatures of 300 K and 1023 K. The calo-
rific value of fuel is 44 MJ/kg. If the mechanical
efficiency and the generator efficiency are 95%
and 96% respectively, and for an air-flow rate of
20 kg/s, calculate (a) the air-fuel ratio, (b) the
thermal efficiency, and (c) the power output.

A turbojet aircraft is travelling at 925 km/h in
atmospheric conditions of 0.45 bar and —26°C.
The compressor pressure ratio is 8, the air mass
flow rate is 45 kg/s and the maximum allowable
cycle temperature is 800°C. The compressor, tur-
bine and jet pipe stagnation isentropic efficiencies
are 0.85, 0.89 and 0.9 respectively, the mechanical
efficiency of the drive is 0.98 and the combustion
efficiency is 0.99. Assuming a convergent propul-
sion nozzle, loss of stagnation pressure in the com-
bustion chamber of 0.2 bar, and a fuel of calorific
value of 43.3 MJ/kg, calculate (a) the required
nozzle exit area, (b) the net thrust developed,
(c) the air—fuel ratio, and (d) the specific fuel con-
sumption. For gases in the turbine and propulsion
nozzle, take v = 1.333 and Cp= 1.15 kJ/kgK.

Ans. ((a) 0.216 m? (b) 19.94 kN, (c) 70.87,
(d) 0.0319 kg/kNs)

In a turboprop engine, the compressor pressure ratio
is 6 and the maximum cycle temperature is 760°C.
The stagnation isentropic efficiencies of the com-
pressorand turbine are 0.85 and 0.88 respectively, the
mechanical efficiency is 0.99. The aircraft is flying
at 725 km/h at an altitude where the ambient tem-
perature is —7°C. Taking an intake duct efficiency of
0.9, neglecting and pressure loss in the combustion
chamber, and assuming that the gases in the turbine
expand down to atmospheric pressure, leaving the
aircraft at 725 km/h relative to the aircraft, calculate
(a) the specific power output, and (b) the cycle effi-
ciency. For the gases in the turbine, take v =1.333
and ¢, = 1.15 kl/kgK.

(Ans. (a) 170.2 kW per kg/s (b) 28.4%)

Afterburning is used in the aircraft of Problem
21.8 to obtain an increase in thrust. The stagna-
tion temperature after the afterburner is 700°C
and the pressure loss in the afterburning process
is 0.07 bar. Calculate the nozzle exit area now

21.10

21.11

21.12

21.13

21.14
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required to pass the same mass flow rate as in
Problem 21.8 and the new net thrust.
(Ans. 0.24 m?, 22 kN.)

A turbojet unit flies at 225 m/s in air where ¢ =
0.62 bar and T = 265 K. The unit has diffuser
(n = 0.9), compressor (n = 0.85, pressure ratio
6), combustion chamber (pressure loss 0.15 bar,
n = 0.9), turbine (n = 0.88, inlet temperature
1100 K, and nozzle (y = 0.9) Calculate the thrust
and the air—fuel ratio, if the heating value of the
fuel is 40 MJ/kg. (Ans. 392.32 N/kg air, 59.73.)

The drag for a turbojet aircraft is 7 kN and the
propulsive efficiency is 0.55. When the aircraft is
flying with a speed of 800 km/h, estimate (a) the
diameter of the jet if the air density is 0.17 kg m?,
(b) the air—fuel ratio when the overall efficiency of
the unit is 20% and (c) the specific fuel consump-
tion if the heating value of the fuel is 40 MJ/kg.
(Ans. (a) 4.96 cm, (b) 98.97, (c) 0.45 kg/kWh)

A propeller of 3.5 m, diameter-produces a thrust
of 20 kN while flying at a speed of 100 m/s where
the pressure is 1 bar and the temperature is 280 K.
Estimate the velocity in the final wake, the pres-
sure rise through the propellerer, and the propel-
ler efficiency.
(Ans. V,= 1155 m/s, Ap = 2.0786 kPa,
My = 92.8%)
An aircraft is flying at a speed of 250 m/s and the
air mass flow rate is 45 kg/s. The air—fuel ratio is
60 and the heating value is 40 MJ/kg. If the gases
expand to ambient pressure in the nozzle, deter-
mine (a) the jet velocity when thrust power is max-
imum, (b) the thrust and thrust power, and (c) the
propulsive and overall efficiency of the system.

(Ans. (a) 500 m/s, (b) 11.625 kN and 2.91 Mw,
(c) 0.674 and 0.0968.)

The combustion gases from a rocket motor have
negligible velocity when leaving the CC at a pres-
sure of 25 bar and a temperature of 3000 K. The
gases expand through a convergent—divergent
nozzle to a pressure of 1.5 bar in the exit plane
of the nozzle. Assuming isentropic expansion
and taking for gases v = 1.2 and a motor mass of
32 kg/kgmol and neglecting dissociation effects,
calculate the ratio of exit area 4, to throat area 4,.
Also, calculate the thrust developed per unit throat
area when the rocket is operating in outer space.

Ans. 3.19, 11.415 MN/m? throat area.



Collisions between molecules were not considered in Chapter 21 while deriving the expressions for pressure
and temperature of an ideal gas in terms of its molecular properties. Intermolecular collisions will now be
considered.

221 MEAN FREE PATH AND COLLISION CROSS-SECTION

Let us single out one particular molecule represented by the black circle and trace its path among the other
molecules, which would be assumed to be frozen in their respective positions (Fig. 22.1). The distance traversed
by a molecule between successive collisions is called the free
path, denoted by x, and the average length of these paths is

called the mean free path, denoted by X. The molecules are ~ © o
assumed to be perfectly elastic spheres of radius . As two
molecules collide, the centre-to-centre distance is 2r, which o
would remain the same if the radius of the moving molecule °
is increased to 2r and the stationary molecules are shrunk to

)

geometrical points, as shown in Fig. 22.1 The cross-sectional
area of the moving molecule is called the collision cross-
section o, and it is given by o = 4 12
The moving molecule sweeps out in time ¢, a cylindri-
cal volume of cross-sectional area o and length %, where ¥ is the average velocity of the molecule. The
number of collisions it makes during this time, will be the same as the number of molecules whose centres
lie within this volume, which is onvt, where n is the number of molecules per unit volume. The number of
collisions per unit time is known as the collision Jfrequency, denoted by z, which is:
z=0nv (22.1)

The mean free path of the molecules is given by:

M Free paths a gas molecule

_Distance travelled in time ¢ _vt 1 )
Number of collisions in timet onvt on (22.2)

On an average, the diameter (d) of the molecules is (2 to 3) x 1071 m, the distance between molecules
3 x 107° m (or 10d), and the mean free path is about 3 x 10~8 m (or 100d).
If motion of all the molecules if considered and all the molecules move with the same speed, a correction
is required and ) is obtained as:
A=0.75/on (22.3)
If the Maxwellian velocity distribution is assumed for the molecules, A\ =0.707/on (22.4)
For an electron moving among molecules of a gas, the radius of the electron is so small compared to that of
a molecule that in a collision the electron may be treated as a point and the centre-to-centre distance becomes
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r, instead of 2r, where r is radius of the molecule. Also, the velocity of the electron is so much greater than the
velocities of the molecules that the latter can be considered stationary. As a result, no correction is required, and
the electronic mean free path A, is given by:

A, =4dlon (22.5)
where o=4nr

22.2 ‘ DISTRIBUTION OF FREE PATHS

The distance travelled by a molecule between successive collisions or the free path x varies widely. It may be
greater or less than ), or equal to it. Just like distribution of molecular velocities, we will now determine how
many molecules will have free paths in a certain range, say between x and x + dx.

Let us consider a large number of molecules N, at a certain instant (Fig. 22.2). If the molecules collide, they
will be assumed to get removed from the group. Let N represent the number of molecules left in the group
after travelling a distance x. Then these N molecules have free paths larger than x. In the next short distance dx,
let dV number of molecules make collisions and get removed from the group. So, these dN molecules which
have free paths lying between x and x + dx are proportional to N and to dx. Since N is always decreasing, dN
is negative and it is given by:

dN=—P Ndx (22.6)
where P_ is the constant of proportionality, known as the collision probability.
Then dN/N = — P_dx
’ InN=-Px+4
Where 4 is constant. Whenx = 0, N = N,, and so 4 = In N,,. Therefore, N = Nye ™ ™* (22.7)
The number of molecules that remains in the group falls off exponentially with x. From Eq. (22.6),
dN =—P.Nye ™ dx (22.8)
Using this expression for dV, the mean free path A becomes
fXdN f—xi’cNoe°P°x dx .
A= =0 =—
f dN Ny F,

@ Molecules colliding and getting removed from the group
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N
s No/A
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o 1.0
2
= 0.37Ny/A
0.37
0

y Plot of survival equation

§ Distribution of free paths

Since A = 1/ n, P, = on. The collision probability is thus proportional to the collision cross-section and the
number of molecules per unit volume. The Eq. (22.7) can thus be written as

N= Noe"‘/* (22.9)
It is know as the survival equation which indicates the number of molecules N, out of N, which survive

collision and have free paths longer than x. A plot of N/N, vs x/A is shown in Fig. 22.3. If x/A = 1, ie., x = A,
NIN, = 0.37. The fraction of free paths longer than ) is, therefore, 37% and the fraction shorter than A is 63%.

Differentiating Eq. (22.9) dN = E)‘o—e"‘“dx

or, dN/dx = —%e"‘” (22.10)

This equation represents the distribution of free paths. It is plotted in Fig. 22.4. The area of the narrow
vertical strip of thickness dx at a distance x from the origin represents dN, the number of molecules with free
paths of lengths between x and x + dx.

22.3 TRANSPORT PROPERTIES

A Simple treatment based on the concept of the mean free path will now be given for four transport
properties of a gas, viz., coefficient of viscosity, thermal conductivity, coefficient of diffusion and electrical
conductivity, which govern respectively the transport of momentum, energy, mass, and electric charge within
the gas by molecular motion.

22.3.1 Coefficient of Viscosity

Let us consider a gas flowing over a flat stationary plate. Due to viscous effect there is the growth of a
boundary layer over the plate surface.

The velocity of fluid at the surface will be zero, and it gradually increases to free stream velocity as shown
in Fig. 22.5, drawn for laminar flow. Let us imagine a surface P-P within the gas at an arbitrary height from
the plate, where the fluid velocity is « and the velocity gradient du/dy. The velocity u is superposed on the
random thermal motion of the molecules. ]

Let us consider a volume element d¥ at a distance » from an element of area d4 in the plane P-P, making
an angle 9 with normal to d4 (Fig. 22.6), the plane P-P being the same as shown in Fig. 22.5. The volume
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motion of molecules Velqcny
profile

=du
u Yy~ Stope = dy

.o

/-

element is very small when compared with the physical
dimensions of the system, but large enough to contain many
molecules. The total number of molecules in dV is ndV, and
the total number of collisions within dV in time dt is %—Zn-
dV - dr, where z is the collision frequency of a molecule, n
is the number of molecules per unit volume, and the factor
% is required since two molecules are involved in each col-
lision. Since two new free paths originate at each collision,
the total number of new free paths, or molecules, originat-
ing in dV is ZndVd:. If we assume that these molecules
are uniformly distributed in direction throughout the solid
angle 4w, then the number headed towards the elemental
area d4 is:
zndV dt

4r

dw

Flow of a gas over a flat plate

dv Normal

rcos 0
™
5~

dA

Transfer of momentum across the
plane P-P by molecules in random
thermal motion

where dw is the solid angle subtended at the centre of dV by the area d4 and is equal to (d4 cos 8)/r2.
The number of molecules that leave dV and reach d4 without having made a collision may be found from

the survival equation, Eq. (22.9), as given below:
zndVdt

dW e—l’//\
T
Since dV = r? sin 0 - d6 - d¢ - dr, the number of molecules leaving d¥ in time dz and crossing d4 without
any collision is
Lmln r?sinfdfdpdrdr e
4r 42

The total number of molecules crossing d4 in time df from the top is

/2

27 00
Ny = 2848 [ ingcosh @t [ ag [ e ar
am ol $=0 r=0
_Zndddtl = lzdaaa @2.11)
ar 2 4

Since the dimensions of the physical system are very much larger than the molecular free path, the integral

over r has been extended to infinity.
But z=¥/) , so the number of molecules crossing the

plane P-P from the top (or bottom) per unit

area and per unit time is %nv. This is the same result obtained earlier in Sec. 21.4 without considering any

intermolecular collision.
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These molecules crossing the plane P-P may be visualized as carrying properties characteristic of an
average distance ¥, either above or below the plane at which they made their last collisions before crossing.
To find ¥, each molecule crossing from dV is multiplied by its distance » cos 6 from the P-P plane, it is
integrated over 6, ¢ and r and then divided by N, , crossing the plane.

__fde—_frcosedN

y_
de Nlotal
1 1 o
v [{{EanAdt.e sinf. cos6. df d¢ drrcosf
w/2 27 o0
= ! Mfsinﬁcoszadﬁfd(,’a fre""\dr
Ntotal 4m =0 ¢=0 r=0
ZndA d: 127(')\2 5
= i‘?f 3 =2 (22.12)
—ZnXd4de
4
The velocity of gas at a height y above PP is,
2. du
Uu+—A—
3 dy

if the velocity gradient is considered constant over distances of the order of a free path.
The net momentum in the direction of flow carried across the plane by the molecules crossing PP from
above per unit area and per unit time is:

—nvm|u+ 2 A du
4 3 dy
Similarly, the net momentum transfer from below is:

| - 2. du

—nvmlu——A—

4 3 dy

The difference between the above two quantities is the net rate of transport of momentum per unit area and

per unit time, given by: 1 du
—-nmvi—
3 dy

. . . . . . du . ..
From Newton’s law of viscosity, this is the viscous force per unit area 7 = u— , where p is the coefficient
of viscosity. dy
Therefore,

=-;;an/\ (22.13)
Putting o = I/A\n from Eq. (22.2),
p=Limv (22.14)
3¢

Where o is the collision cross-section.
For a gas with a Maxwellian velocity distribution, v=[8 KT/tm]"'?, A=0.707/on
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Therefore, from Eq. (22.13), p= %[mKT/w] 112 (22.15)
g
Putting o = nd?
2 (mKT)"?
=g (22.16)

A significant conclusion from this equation is that the viscosity of a gas is independent of the pressure or the
density and depends only on the temperature. As the temperature of the gas increases, its viscosity increases.

22.3.2 Thermal Conductivity

It is possible to derive an expression for the thermal conductivity of a gas by repeating the argument leading
up to the Eq. (22.12). For a system, not being isothermal. the molecules moving from the warmer region to
the colder region carry with them more energy than those moving in the opposite direction, resulting in a net
transfer of energy.

Let us consider a gas confined between two stationary plates (Fig. 22.7) maintained at different tempera-
tures. Let 7 be the temperature at the plane P-P and d7/dY the temperature gradient. The mean energy of a
molecule at a temperature T'is given by 5 KT , where fis the number of degrees of freedom. It was concluded
from Eq. (22.12) that the molecules crossing the plane from either direction carry property values character-
istic of the planes (2/3)\ distance from the plane.

Therefore, the energy carried across the plane per unit area and per unit time, by the molecules crossing
the plane from above:

— n v f KiT+-— 2 —A— dr
3 dy
and the energy carried by the molecules crossmg from below:
L klr_2,4T
4 2 3 dy
The net rate energy transfer per unit area is the difference of the above two quantities, which gives:
—n vfK /\d—T
6 dy
By Fourier’s law, this is given by:
dr
g=K—
dy
T
T _ar
Slope = dy

T2

[93 Transfer of energy in a gas
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where £ is the thermal conductivity of the gas. Therefore,

k=én§fK)\ 22.17)
or, p=1V/K (22.18)
6 o

For a gas with a Maxwellian velocity distribution,
v =[8KT/nm]"? and A = 0.707/on

k=1L K KT my 2 (22.19)
3 0
The above equation predicts that the thermal conductivity of a gas, like the viscosity, is independent of
pressure or density, and depends only on temperature. It increases as the temperature increases.

For a monatomic gas, = 3 and putting ¢ = 7d?,

3112
P 1 (KT
- 2282 m
Dividing Eq. (22.15) by Eq. (22.19),

u/k=2m/fK (22.20)

» fo_ SR

But =M/N,, K=R/N,, ¢, =~ R =2 —,

ul m / 0 / 0> Cy 2 2 M
where M is the molecular weight and N, is the Avogadro’s number. Therefore, on substitution in Eq. (22.20)
pe, k=1 (22.21)
or, Prandtl number, Pr=pc,lk=~ (22.22)

The results given by the Eqs (22.21) and (22.22) agree with the experimental values only as regards order
of magnitude.

22.3.3 Coefficient of Diffusion

Ina gaseous mixture, diffusion results from random molecular motion whenever there is a concentration gradient
of any molecular species. Let us consider two different gases 4 and B at the same temperature and pressure on
the two opposite sides of the partition in a vessel (Fig. 22.8). The number of molecules per unit volume (p/KT)
is, therefore, the same on both sides. When the partition is removed, both the gases diffuse into each other,
and after a lapse of time both the gases are uniformly

distributed throughout the entire volume. The diffusion Partition

process is often superposed by the hydrodynamic flow S/ S S S S S /// /S /S S S S
resulting from pressure differences, and the effects of g o o ° ;
molecules rebounding from the walls of the vessel. When ~ */ o o ° « I
more than one type of molecule is present, the rates of /] ° ¢ “
diffusion of one species into another are different. To ; o ° * o B ;

L °

simplify the problem we assume: (1) the molecules of a v o ° o o [
single species diffusing into others of the same species ; *

(self-diffusion), (2) the containing vessel very large LSS
compared with the mean free path so that collisions with B = Diffusion of gases A and B when the
the walls can be neglected in comparison with collisions partition is removed
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with other molecules, and (3) a uniform pressure y
maintained so that there is no hydrodynamic flow.
Of course, if all the molecules are exactly alike,
there would be no way experimentally to identify
the diffusion process. However, the diffusion of
molecules that are isotopes of the same element is a
practical example of the self-diffusion process.

Let n denote the number of molecules per unit
volume of one gas, blackened for identification
(Fig. 22.9). Let us consider diffusion across an
imaginary vertical plane y-y in the vessel. Let us
also assume that n increases from left to right in the
positive x-direction. The number of black molecules
crossing the plane from right to left exceeds the
number crossing in the opposite direction. The net A
transfer of black molecules from left to right per
unit area and per unit time, denoted by T', is given by: y

r= —DE (22.23)
dx
where D is the coefficient of diffusion.

Let us consider a volume element d¥ at a distance » from an element of area d4 in the plane y-y, making
an angle 6 with normal to d4. The concentration of black molecules in the plane of dV at a distance x from
the vertical plane,

dv

-~
[o]
[o]
(7]
L~

Diffusion across an imaginary plane

n=n0+x%=n0—rcos ()g—xn— (22.24)

Where n, is the concentration at the vertical plane. The total number of free paths originating in d¥ in time dz is
ZndVdt, where n, is the total number of molecules per unit volume. The number of free paths of black molecules

will be —n—(Znthdt), or ZndVdt. The number of black molecules crossing d4 without making a collision, as
n

t
found in Section 22.3.1 is LZrz dA4 dt sin 6 cos 8 e¥* d6 d¢ dr. By substituting for n from Eq. (22.24), it is:
™
Zl—Zno dA dt sind cosd &6 do dr
(9

~ L 2% 44 drsinbeos? 0re 6 dg dr
47 dx
Integrating the above expressions over 8 from 0 to /2, over ¢ from 0 to 27 and over » from 0 to oo, the

number becomes 1 1 dn
—ZnAdAdt——Z)\* —dd4 dt
4 6 dx

Therefore, the number of black molecules crossing the plane y-y from left to right per unit area and per
unit time is: 1 1 dn
L==ZnA—-Z\ — (22.25)
- 4 6 dx

Similarly, the number crossing from right to left is
1 1 2 dn
P=—ZnA+=-Z X\ —
~=3% Ry 6

. (22.26)
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By subtracting Eq. (22.26) from Eq. (22.25), the net number crossing from left to right becomes

r—_1l,y2dn (22.27)
3 dx
From Eqgs (22.23) and (22.27) |
D= 5z,\2 (22.28)
Putting z=v/)\, 1
D= 3 A (22.29)

For Maxwellian velocity distribution of the molecules,
V=[8KT/7m]"> and A=0.707/on,

p=—2 [KT/7m]"? (22.30)
3on,
2 1/2

t
The equation applies to diffusion in a binary mixture of almost identical gases. Dividing Eq. (22.15) by

Eq. (22.30), wD = n.m=p
or, Schmidt number Sc = p/pD =1 (22.32)

Measured values of Schmidt number for the diffusion of isotopic tracer molecules yield values between
1.3 and 1.5, which indicate qualitative agreement of theory with measured data.

2234 Electrical Conductivity

Conduction of electricity in a gas arises as a result of motion of the free electrons present in the gas. When
high-energy atoms in the gas collide, some collisions cause ionization when an electron is separated from its
atom, so that a negatively charged electron and a positively charged ion are produced from the neutral atom.
Most gases at room temperature do not have many such high-energy molecules and thus have very few free
electrons. At high temperatures, however, an appreciable number of electrons may be liberated and the gases
may become highly conductive. In absence of external electrical fields, the electrons will be distributed uni-
formly throughout the gas volume. As an electrical field is impressed on the gas, the charged particles are
accelerated with a force dv

[

F=gE=m, i (22.33)
where g, is the charge on the electron and E is the electric field strength (volts per metre). Integrating
Eq. (22.33) dr, gq.Et

VvV, = —e — Te T
Codt m,
Att=0,v, =0, x, = 0. Similarly, the velocity of a single chargedionis: v, = 4kt (22.34)
m.

where ¢, is the charge on an ion and m, is the mass of the ion. Since, m/m_= 1840 M, where M is the atomic
weight of the ion, v/v, = 1/1840 M. Therefore, the velocity of the ions is very small compared to the velocity
of electrons and is neglected.

The electron velocity v, is randomly oriented in absence of an electric field with no preferred direction of
motion. The electron would attain the velocity v, (in Eq. 22.33) after ¢ seconds of impressing the electric field,
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assuming it had to collision. To consider the effects of collision, it is assumed that the electrons are brought to
rest after each collision, reaccelerated by the electric field, and then undergo another collision. The distance
traveled between collision x, is obtained by integrating Eq. (22.33).

x, = (q.Et?)/2m,
where ¢ is the collision time.
The average distance travelled between collisions is

- 1
Xe = Fe f xedNe
where N, is the total number of electrons in the gas.
The distribution of collision times is identical to distribution of free paths given by Eq. (22.10), which is
N e /T,

AN, = =<e™"/"dt (22.35)

Te

where 7, is the mean collision time for electrons.
The average distance travelled in the electric field by the electrons between collisions, X,, divided by the
mean collision time 7, is called the electron drift velocity, v, Therefore

- 11
Ve, = c/Te’_"T_'IT x.dN,
[ [
_11 Tq,Et2 N tireg,
7. N, o 2m, T,
= LELE.T,Ze—”nd, _ %ETe (22.36)
72 2mg ) m,

From Eq. (22.5), the electronic mean free path is
A, = 4/on

Also, A, =Vcr,, where V. is the average velocity of the electrons, given by [8KT/rm_]"2 for Maxwellian
velocity distribution. Therefore, a.E 4 1/2
=4e= 7

m, on

Using n = p/KT,

44 E
op

wm,
8KT

€4

KT 1/2

8m,

ey (22.37)
where o is the atomic cross-section. .
The flux of charge across unit area per unit time is called the current density, J. The current density is
defined with respect to the average drift velocity by the following equation,
J=ngy,, (22.38)
where n_is the number density of electrons. The motion of the ions is neglected. From Eqgs (22.36) and (22.38),
2
J=%"Te g . (22.39)
m

(3
The current density is proportional, to the electric field and the constant of proportionality is called the
electrical conductivity, o, J=0E
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From Eq. (22.39), 0, is given by )
o= qe neTe
, =
me
Putting A=VT1,=4/0n,
1/2
7rnne

5 o Lene 4 [mm,
8KT

e
m, on

2 1/2
—_ qene
an

2w
m KT
The electron drift velocity Ve, is also proportional to the electric field and the proportionality constant is
called the electron mobility, p,

(22.40)

Ve, =l E

From Eq. (22.36)
B =(q./7c)/ m,

Again, using
A =Ve T, =4/0n,
1/2 1/2
“, _9g. 4 |mm | _ 4. | 27 (22.41)
m, on|8KT on|m KT
st Yol i
l Example 22.1

Calcuate the mean free path for oxygen molecules at 1 atm pressure and 300 K. What fraction of molecules
have free paths longer than 2\?. The effective diameter of the oxygen molecule is 3.5 Angstroms.

Solution The collision cross section of the oxygen molecule is:
o =nd? =m(3.5x1071%)? =3.84 107" m?
Number of molecules per unit volume
n=p/KT =(1.013x10%) /(1.38x 107> x 300)
= 2.45x10% molecules/m>
The mean free path is given by Eq. (22.4)
A=0.707/0n = 0.707/(3.84 x 107" x 2.45x10%)
=725x10"m Ans.
From the Eq. (22.9), putting x = 2\
N/IN,=e™*=¢7?=0.135
i.e., 13.5% of the molecules have free paths greater than 2.
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I Example 22.2

The mean free path of the molecules of a certain gas at a temperature of 25°C is 2.63 x 10~5 m. The radius
of the molecules is 2.56 x 10~10pm.

(a) Find the pressure of the gas. (b) Calculate the number of collisions made by a molecule per metre of path.

Solution  The collision cross-section, ¢ = 4nr? = 47 x (2.56 x 1071°)? = 82.36 x 10~ m?

Number of molecules per unit volume of the gas is:

n= (assuming Maxwell-Boltzmann velocity distribution)

B 0.707
82.36 x 1072 x 2.63 x 10~°

From the ideal gas equation of state,

=0.326 x 10 molecules m*

P = nKT
= 0.326 x 10 BleCUeS 3102 — T L o08k
m molecule -K
=0.326 x 1.38 x 298 N/m? =134.06 Pa Ans. (a)
Number of collisions made by a molecule:
=:1\—=r63:—10_—5=3.8x10‘ Ans. (b)
I Example 22.3

The mean free path in a certain gas is 10 cm. If there are 10,000 free paths, how many are longer than
(@) 10 cm, (b) 20 cm, (c) 50 cm, (d) How many are longer than 5 cm, but shorter than 10 cm. (¢) How many
are between 9.5 cm and 10.5 cm in length? ( f) How many are between 9.9 cm and 10.1 cm in length?
(g) How many are exactly 10 cm in length?

Solution From the survival equation, N = Noc‘z""A

where N, =10,000 and A =10 cm (given)

N =10,000 e ¥'°
is the governing equation,
(@) Forx>10cm, N =10,000 ¢~ =10,000/2.718 = 3680 Ans.
() Forx >20cm, N =10,000 ¢ 2 =1354 Ans.
(c) Forx>50cm, N =10,000¢°=67.4 or 68 Ans.

(d) Fox x between 5 cm and 10 cm, we have

v = Mo gxirgy

— NO —x/A __NO -x/10 10
N—[——/\—e dx = —=2e (X))
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= —N,[e 1 = Nyle™ —e%5]
= N,[0.3679 —0.6066] = —0.2387 x 10,000
= —2387
The negative sign implies than N is decreasing with x.
(e) For x between 9.5 cm and 10.5 cm
N=— 10, Ooo[e—9.5/10 _ e—lO.S/lO]
= —10,000(0.3870 —0.3500) = —370 Ans.
(f) For x between 9.9 cm and 10.1 cm
N=— 10,000[8_9‘9“0 _e—-IO.IIIO]
= —10,000(0.3716 —0.3642) = —74 Ans.

N
N= ——Qfe_"/'\dx = zero Ans.
A o

Ans.

(g) Forx = 10 cm exactly

' | Example 22.4

| Calculate the coefficient of viscosity of oxygen at 1 atm pressure and 300 K.

Solution From previous examples, we have
m=5.31x1072% kg/molecule
V=445 m/s
0=384x10"" m’

Therefore, p= 1mv
30
_(5.31x 107%) kg/molecule x 445 m/s
3 x 3.84 x 107" m?/molecule
=2.05 x 10~° kg/ms Ans.

=2.05 x 10~° Ns/m? Ans.

| Example 22.5

‘ Calculate the thermal conductivity of oxygen at 1 atm, 300 K.

Solution For oxygen, a diatomic gas, the degree of freedom f= 5.
v =[8 KT/xm]"* = 445 m/s
o=nd*=3.84x10""m’

c_LOrK

6 o
1 445 m/s x 5 x 1.38 x 10~ J/molecule K
- 6 3.84 x 107"° m*/molecule

= 0.0133 W/mK Ans.
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If the gas has Maxwellian velocity distribution,
1 fK

L 2 [KT/nm]"?
g
5 % 1.38 x 1072 J/molecule K y

1 1.38 x 10723 (J/molecule K) x 300
3 3.84 x 107" m*/molecule

7 x 5.31 x 1072 kg/molecule

_5x138x10% J [138x 10 x300[”
3x3.84x107" m’K| 7 x 531 x107%
— 0.0095 W/mK Ans.

Example 22.6

Determine the pressure in a cathode-ray tube such that 90% of the electrons leaving the cathode ray reach
the anode 20 cm away without making a collision. The diameter of an ion is 3.6 x 10~'% m and the electron
temperature is 2000 K. Use the electronic mean free path \, = 4/on, where o is the cross-section of the ion.
Solution The several equationis N = Nye™**
where N=09N, and x=02m
0.9 =g '
x/A =0.1053
A=0.2/0.1053=19m
o =4nr = 41 x(1.8 x 107192 =40.715 x 10~ m?

4 4
AN T s k0
n= 4 o =5.17 x 10'® molecules/m’
40.715x 107" x 1.9
Pressure in the cathode ray tube
P=nKT =517 x 10" x 1.38 x 102 x 2000 N/m?
=14.27 x 1072 = 0.1427 Pa Ans.

| Example 22.7

Oxygen gas is contained in a one-litre flask at atmospheric pressure and 300 K. (a) How many collisions
per second are made by one molecule with the other molecules? (b) How many molecules strike one sq. cm
of the flask per second? (c) How many molecules are there in the flask? Take radius of oxygen molecule
as 1.8 x 10719,

Solution (a) Number of molecules in the flask at
1 atm, 300 K = NV = n = p/KT

_ 101.325 x 1000 N/m?
1.38x10™% J/molecule - K x 300 K
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= 2.45 x 10 molecules/m?
= 2.45 x 10%2 molecules/litre
o=4mr =4r x (1.8 x 107192 = 40.71 x 102° m?
Collision frequency, z=ony,
where ¥ = [8KT/7m]"?
Mass of an oxygen molecule, m = 5.31 x 1026 kg/molecule

2 12
5= 8x1.38x10 ><2300 — 445.58 m/s
mx531x10”
z2=40.71 x 10~20 x 2.45 x 10?° x 445.58
= 4.44 x 10° collisions/s Ans. (a)

(b) Number of collisions = i—nT}

= al-x 2.45x10% x 445.58

= 272.92 x 10% collisions/m3s

= 2.73 x 10 collisions/cm?s Ans. (b)
(c) Number of molecules in the flask

= 2.45 x 102 Ans. (c)

| Example 22.8

A group of oxygen molecules start their free paths at the same instant. The pressure is such that the mean
Jree path is 2 cm. After how long a time will half of the group still remain, i.e., half will not as yet have made
a collision? Assume that all particles have a speed equal to the average speed. The temperature is 300 K.

Solution The survival equation in N = N, e™*
The group is reduced to half after travelling a distance x, i.e., half of the group has a free path
longer than x. The mean free path, ), is 2 cm.
N/Ny=05=e>
x/A =1n2 = 0.693

. x=1.386 cm
For oxygen at 300K, v =445.58 m/s = 4.456 x10* cm/s
Time, t = 1.386/(4.456 x 10%) = 3.11 x 10~5s Ans.

Example 22.9

To what pressure, in mm of Hg, must a cathode ray tube be evacuated in order that 90% of the elec-
trons leaving the cathode shall reach the anode, 20 cm away, without making a collision? Take for ion
0=4.07 x1079 m? and T = 2000 K.

Solution The survival equation is N =N,e
Here, N=09N, x=02m
09=e*



Transport Processes in Gases
e =1.111
x/A=In1.111
=0.2/0.105=2m
. 1 i
Electronic mean freepath \ =—=—————=2m
P A = e T 207 x 10
n = 1.23 x 10'® molecules/m3
Now, pressure p = nKT :
=123 x 10" MU g 3g w102 —L 2000k
m molecule K

=3.395 x 1072 N/m?

Example 22.10

Ans.

of diffusion of radioactive molecules across the cross-section? Take o = mr? = 4 x 10719 m?.

Solution (a) Number of molecules/m® at 1 atm, 273 K

n= p/KT = 101.325 >2<31000
1.38 x 107~ x 273
Concentration gradient, dn/dx = (—2.69 x 10%%)?

= —1.345 x 10?* molecules/m*

=2.69 x 10 molecules/m’

) v=[2.55 KT/m]'?
1/2
_|2.55x1.38 x 1072 x 273 x 6.023x10%
46
V=355 m/s
r=Lto ! =93x10"m

on 269 x10® x4 x107"
Number of molecules crossing from left to right per unit area per unit time:
1 1 dn
'=—zngA——z\, —
L= mmA-—gzh o

4
1_.dn
=—Vny——VA—
207 &
=% x 355 x 2.69 x 10% —% X 355 x 9.3 x 107° x (—~1.345%x10%)
=2.39 x 10%7 4+ 7.4 x 10*! molecules/m?s N

A tube 2 m long and 10~* m? in cross-section contain CO, at atmospheric pressure and 0°C. The carbon
atoms in one-half of the CO, molecules are radioactive isotope C'*. At time t = 0, all the molecules at the
extreme left end of the tube contain radioactive carbon, and the number of such molecules per unit volume
decreases uniformly to zero at the other end of the tube. (a) What is the initial concentration gradient of
radioactive molecules? (b) Initially, how many radioactive molecules per sec cross a cross-section at the
mid-point of the tube from left to right? (c) How many cross from right to left? What is the initial net rate

Ans.

Ans.
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(c) Number of molecules crossing from right to left per unit area unit time:

1 1 _dn
r=un +1%
i

Net rate of diffusion:

= 7.4 x 10?! x 2 = 14.8 x 10? molecules/m?s
14.8 x 10%! x 46 molecules

6.023 x 10% m’s

=113 x 105 = 11.3 x 10~* kg/m?s

= 2.39 x 10?7 — 7.4 x 10! molecules/m?s Ans.
kg y kgmol
kgmol molecules
Ans.

= 1.13 g/m’s

Define mean free path, collision cross-section
and collision frequency. ’

Show that A = 1/on. What is electronic mean
path? Why is it is equal to 4/on?

What is collision probability? Show that it is
reciprocal of the mean free path.

Derive the survival equation: N = N, e and
explain its significance.

Show that 37% of the molecules in a gas have free
paths longer than A,

Explain graphically the distribution of free paths
of gas molecules.

What are transport properties? What do they
signify?
Show that the number of molecules crossing a
plane in a gas per unit area and per unit time is
1
ual to —n¥v.
o 4

Show that the average distance from a plane in a
gas where the molecules made their last collisions

before crossing that plane is equal to %/\.
Show that the coefficient of viscosity of a gas is

equal to -:];nm%\. With a Maxwellian velocity

distribution of gas molecules, show that

2 172
# 30

mKT
T

22.11

22.12

22.13

22.14

22.15

and hence, assert that the viscosity of a gas
depends only on the temperature, and is indepen-
dent of pressure or density of the gas.

Show that the thermal conductivity of a gas is

given by = lT)f_K With a Maxwellian velo-
6 o

city distribution, show that:

¢ 1L K[KT)"

3 o |7mm

Hence, assert that the-thermal conductivity of
a gas is independent of pressure or density, and
depends only on the temperature.
Show that for a monatomic gas,

/2
1 &t

7I,3/2dZ m

k

Show that the theoretical value of Prandtl number of
a gas is equal to the specific heat ratio of the gas.
What do you understand by a self-diffusion pro-
cess? What is the coefticient of diffusion?

Derive the expression for the coefficient of diffu-
sion in a gas from molecular theory as given by:

D=1V/\
3

With Maxwellian velocity distribution, show that
2 [kr]”?
= 322 n,
Where n, is the total number of molecules per unit
volume.

m
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22.17

22.18

22.19

22.20

22.1

222

223

224

225

22,6

Define Schmidt number. What is its physical
significance? Show that for a gas the Schmidt
number is unity.
Why do all collisions of gas molecules not cause
ionization?
Explain why at high temperatures a gas can be
highly conductive of electricity.
Show that the ratio of velocities of an ion and a
free electron is given by:

v/v, = 1/1840M
where M is the atomic weight of the ion.

Explain the distribution of collision times of
electrons.

2221

22.22

22.23

Calculate the collision frequency of a nitrogen
molecule (a) at 300 K and 1 atm pressure, (b) at
300 K and 1 micron Hg abs. pressure. The radius
of nitrogen molecule is 1.88 x 10~'°m.

Ans. (a) 7.35 x 10° collisions/s
(b) 9.63 x 10° collisions/s

Calculate the collision rate of » molecule in/a
Maxwellian gas. Ans. 2. on[8 KT/7rm]1 2

The mean free path of a certain gas in 12 cm. If
there are 10,000 free paths, how many are longer
than (a) 5 cm, (b) 15 cm, (c) 50 cm? (d) How
many are longer than 6 cm, but shorter than
12 cm? (e) How many are between 11.5 cm and
12.5 cm in length? (f) How many are between
11.9 and 12.1 cm in length? (g) How many have
free paths exactly equal to 12cm?

The mean free path of the molecules of a certain
gas at 20°C is 3 x 1075 m. (a) If the radius of the
molecule is 3 x 1071%m, find the pressure of the
gas. (b) Calculate the number of collisions made
by a molecule per metre of path.

The mean free path of the molecules of a certain
gas at 298 K is 2.63 x 10~ mm, the radius of each
molecule is 2.56 x 10~'°m. Compute the number
of collisions made by a typical particle in moving a
distance of 1 m, and also the pressure of the gas.

Determine the pressure in a cathode ray tube such
that 95 per cent of the electrons leaving the cathode
ray reach the anode 25 cm away without making a
collision. The diameter of an ion is 3.6 »x 101 m
and the electron temperature is 2000 K. Use the

227

229

3

What do you mean by electron drift velocity?
Show that it is given by:

9.E7. _44.E
”le ap

Transport Processes in Gases

1/2

wKT
8m,

Ve‘ =

Show that the electrical conductivity of a gas is

given by:
2 1/2
= qe ”e

an

2

m KT

Define electron mobility. Show that it is given by:
1/2
=4

27
on

m, KT

€

electronic mean free path A, = 4on, where o is
the cross-section of the ion.

A beam of electrons is projected from an electron
gun into a gas at a pressure p, and the number
remaining in the beam at a distance x from the
gun is determined by allowing the beam to strike a
collecting plate and measuring the current to the
plate. The electron current emitted by the gun is
100 pa, and the current to the plate when x =
10 cm and p = 1 mmHg is 37 pa. Determine (a)
the electron mean free path, and (b) the current at
500 p Hg pressure.  Ans. (a) 10 cm, (b) 60.7 pa
A singly charged oxygen ion starts a free path
in a direction at right angles to an electric field
of intensity 100 volts/cm. The pressure is one
atmosphere and the temperature 300 K. Calculate
(a) the distance moved in the direction of the field
in a time equal to that required to traverse one
mean free path, (b) the ratio of the mean free path
to this distance, (c) the average velocity in the
direction of the field, (d) the ratio of the thermal
velocity to this velocity, and (e) the ratio of the
energy of thermal agitation to the energy gained
from the field in one mean free path.

Ans. (a) 3.87 x 1071%m, (c) 340 m/s, (e)10*

A spherical satellite d metre in diameter moves
through the earth’s atmosphere with a speed of
vm/s at an altitude where the number density is
n molecules/m*>. How many molecules strike the
satellite in 1 second? Derive an expression for the
drag experienced by the satellite, assuming that all
molecules which strike the sphere adhere to it.
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